CT-based Radiomic Signatures for Predicting Histopathologic Features in Head and Neck Squamous Cell Carcinoma

被引:45
作者
Mukherjee, Pritam [1 ]
Cintra, Murilo [1 ,2 ]
Huang, Chao [1 ,3 ]
Zhou, Mu [1 ]
Zhu, Shankuan [3 ]
Colevas, A. Dimitrios [4 ]
Fischbein, Nancy [5 ]
Gevaert, Olivier [1 ,6 ]
机构
[1] Stanford Ctr Biomed Informat Res BMIR, Dept Med, Stanford, CA USA
[2] Univ Sao Paulo, Ribeirao Preto Med Sch, Dept Radiol, Sao Paulo, Brazil
[3] Zhejiang Univ, Sch Med, Sch Publ Hlth, Dept Nutr & Food Hyg,Chron Dis Res Inst, Hangzhou, Zhejiang, Peoples R China
[4] Stanford Univ, Dept Med, Div Oncol, 1265 Welch Rd, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Radiol, 1265 Welch Rd, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biomed Data Sci, 1265 Welch Rd, Stanford, CA 94305 USA
来源
RADIOLOGY-IMAGING CANCER | 2020年 / 2卷 / 03期
基金
美国国家卫生研究院; 巴西圣保罗研究基金会;
关键词
LOCAL TUMOR-CONTROL; PERINEURAL INVASION; LUNG-CANCER; LYMPHOVASCULAR INVASION; EXTRACAPSULAR SPREAD; HISTOGRAM ANALYSIS; TEXTURE ANALYSIS; CHEMORADIOTHERAPY; RADIOGENOMICS; INFORMATION;
D O I
10.1148/rycan.2020190039
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To determine the performance of CT-based radiomic features for noninvasive prediction of histopathologic features of tumor grade, extracapsular spread, perineural invasion, lymphovascular invasion, and human papillomavirus status in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: In this retrospective study, which was approved by the local institutional ethics committee, CT images and clinical data from patients with pathologically proven HNSCC from The Cancer Genome Atlas (n = 113) and an institutional test cohort (n = 71) were analyzed. A machine learning model was trained with 2131 extracted radiomic features to predict tumor histopathologic characteristics. In the model, principal component analysis was used for dimensionality reduction, and regularized regression was used for classification. Results: The trained radiomic model demonstrated moderate capability of predicting HNSCC features. In the training cohort and the test cohort, the model achieved a mean area under the receiver operating characteristic curve (AUC) of 0.75 (95% confidence interval [CI]: 0.68, 0.81) and 0.66 (95% CI: 0.45, 0.84), respectively, for tumor grade; a mean AUC of 0.64 (95% CI: 0.55, 0.62) and 0.70 (95% CI: 0.47, 0.89), respectively, for perineural invasion; a mean AUC of 0.69 (95% CI: 0.56, 0.81) and 0.65 (95% CI: 0.38, 0.87), respectively, for lymphovascular invasion; a mean AUC of 0.77 (95% CI: 0.65, 0.88) and 0.67 (95% CI: 0.15, 0.80), respectively, for extracapsular spread; and a mean AUC of 0.71 (95% CI: 0.29, 1.0) and 0.80 (95% CI: 0.65, 0.92), respectively, for human papillomavirus status. Conclusion: Radiomic CT models have the potential to predict characteristics typically identified on pathologic assessment of HNSCC. (C) RSNA, 2020
引用
收藏
页数:10
相关论文
共 62 条
[1]   NCCN Guidelines® Insights Head and Neck Cancers, Version 2.2017 [J].
Adelstein, David ;
Gillison, Maura L. ;
Pfister, David G. ;
Spencer, Sharon ;
Adkins, Douglas ;
Brizel, David M. ;
Burtness, Barbara ;
Busse, Paul M. ;
Caudell, Jimmy J. ;
Cmelak, Anthony J. ;
Colevas, A. Dimitrios ;
Eisele, David W. ;
Fenton, Moon ;
Foote, Robert L. ;
Gilbert, Jill ;
Haddad, Robert I. ;
Hicks, Wesley L., Jr. ;
Hitchcock, Ying J. ;
Jimeno, Antonio ;
Leizman, Debra ;
Lydiatt, William M. ;
Maghami, Ellie ;
Mell, Loren K. ;
Mittal, Bharat B. ;
Pinto, Harlan A. ;
Ridge, John A. ;
Rocco, James ;
Rodriguez, Cristina P. ;
Shah, Jatin P. ;
Weber, Randal S. ;
Witek, Matthew ;
Worden, Frank ;
Yom, Sue S. ;
Zhen, Weining ;
Burns, Jennifer L. ;
Darlow, Susan D. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (06) :761-770
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Histogram Analysis of Apparent Diffusion Coefficient Map of Standard and High B-value Diffusion MR Imaging in Head and Neck Squamous Cell Carcinoma: A Correlation Study with Histological Grade [J].
Ahn, Se Jin ;
Choi, Seung Hong ;
Kim, Young-Jae ;
Kim, Kwang Gi ;
Sohn, Chul-Ho ;
Han, Moon Hee ;
Chang, Kee-Hyun ;
Min, Hye Sook .
ACADEMIC RADIOLOGY, 2012, 19 (10) :1233-1240
[4]   Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives [J].
Ausoni, Simonetta ;
Boscolo-Rizzo, Paolo ;
Singh, Bhuvanesh ;
Da Mosto, Maria Cristina ;
Spinato, Giacomo ;
Tirelli, Giancarlo ;
Spinato, Roberto ;
Azzarello, Giuseppe .
CANCER AND METASTASIS REVIEWS, 2016, 35 (03) :413-426
[5]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[6]   Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Stark, Luisa Sabrina ;
Studer, Gabriela ;
Unkelbach, Jan ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
ACTA ONCOLOGICA, 2017, 56 (11) :1531-1536
[7]   Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Ikenberg, Kristian ;
Stieb, Sonja ;
Moch, Holger ;
Studer, Gabriela ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (04) :921-928
[8]   Identification of an atypical etiological head and neck squamous carcinoma subtype featuring the CpG island methylator phenotype [J].
Brennan, K. ;
Koenig, J. L. ;
Gentles, A. J. ;
Sunwoo, J. B. ;
Gevaert, O. .
EBIOMEDICINE, 2017, 17 :223-236
[9]   NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma [J].
Brennan, Kevin ;
Shin, June Ho ;
Tay, Joshua K. ;
Prunello, Marcos ;
Gentles, Andrew J. ;
Sunwoo, John B. ;
Gevaert, Olivier .
SCIENTIFIC REPORTS, 2017, 7
[10]   The Effect of Small Tumor Volumes on Studies of Intratumoral Heterogeneity of Tracer Uptake [J].
Brooks, Frank J. ;
Grigsby, Perry W. .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (01) :37-42