Analysis of Liquid Organic Hydrogen Carrier Systems Properties of liquid organic hydrogen carriers, operation conditions and catalytic materials employed

被引:2
|
作者
Southall, Emma [1 ]
Lukashuk, Liliana [1 ]
机构
[1] Johnson Matthey, POB 1,Belasis Ave, Billingham TS23 1LB, Cleveland, England
来源
JOHNSON MATTHEY TECHNOLOGY REVIEW | 2022年 / 66卷 / 03期
关键词
BENZENE HYDROGENATION; DIBENZYL-TOLUENE; DEHYDROGENATION; STORAGE; METHYLCYCLOHEXANE; CYCLOHEXANE; LOHC; TRANSPORT; MEMBRANE; ENHANCEMENT;
D O I
10.1595/205651322X16415722152530
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid organic hydrogen carriers (LOHCs) provide attractive opportunities for hydrogen storage and transportation. In this study, a detailed examination of the most prominent LOHCs is performed, with a focus on their properties and scope for successful process implementation, as well as catalytic materials used for the hydrogenation and dehydrogenation steps. Different properties of each potential LOHC offer significant flexibility within the technology, allowing bespoke hydrogen storage and transportation solutions to be provided. Among different LOHC systems, dibenzyltoluene/perhydro-dibenzyltoluene has been identified as one of the most promising candidates for future deployment in commercial LOHC-based hydrogen storage and transport settings, based on its physical and toxicological properties, process conditions requirements, availability and its moderate cost. Platinum group metal (pgm)-based catalysts have been proven to catalyse both the hydrogenation and dehydrogenation steps for various LOHC systems, though base metal catalysts might have a potential for the technology.
引用
收藏
页码:271 / 284
页数:14
相关论文
共 50 条
  • [1] Catalytic Reactors for Dehydrogenation of Liquid Organic Hydrogen Carriers
    Makaryan, I. A.
    Sedov, I., V
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2021, 94 (08) : 1011 - 1021
  • [2] Hydrogen Storage and Transportation Technologies to Enable the Hydrogen Economy: Liquid Organic Hydrogen Carriers Overview and perspectives on liquid organic hydrogen carriers technology
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 246 - 258
  • [3] Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts
    Zhou, Min-Jie
    Miao, Yulong
    Gu, Yanwei
    Xie, Yinjun
    ADVANCED MATERIALS, 2024, 36 (37)
  • [4] Application of carbon materials in catalytic systems for the hydrogenation—dehydrogenation of liquid organic hydrogen carriers
    A. N. Kalenchuk
    V. I. Bogdan
    S. F. Dunaev
    L. M. Kustov
    Russian Chemical Bulletin, 2024, 73 : 1 - 13
  • [5] Liquid Organic Hydrogen Carriers or Organic Liquid Hydrides: 40 Years of History
    Meille, Valerie
    Pitault, Isabelle
    REACTIONS, 2021, 2 (02): : 94 - 101
  • [6] An overview of organic liquid phase hydrogen carriers
    Bourane, Abdennour
    Elanany, Mohamed
    Pham, Thang V.
    Katikaneni, Sai P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) : 23075 - 23091
  • [7] Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers
    Modisha, Phillimon
    Gqogqa, Pumeza
    Garidzirai, Rudauiro
    Ouma, Cecil N. M.
    Bessarabov, Dmitri
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) : 21926 - 21935
  • [8] Application of carbon materials in catalytic systems for the hydrogenation-dehydrogenation of liquid organic hydrogen carriers
    Kalenchuk, A. N.
    Bogdan, V. I.
    Dunaev, S. F.
    Kustov, L. M.
    RUSSIAN CHEMICAL BULLETIN, 2024, 73 (01) : 1 - 13
  • [9] The liquid deposit bottle for our energy hydrogen logistics: liquid organic hydrogen carriers
    Geisselbrecht, Michael
    Auer, Franziska
    Kiermaier, Stephan
    Wasserscheid, Peter
    CHEMIE IN UNSERER ZEIT, 2024, 58 (01) : 52 - 60
  • [10] Chemical utilization of hydrogen from fluctuating energy sources - Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems
    Geburtig, Denise
    Preuster, Patrick
    Boesmann, Andreas
    Mueller, Karsten
    Wasserscheid, Peter
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) : 1010 - 1017