Conference key agreement with single-photon interference

被引:52
作者
Grasselli, Federico [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 3, Univ Str 1, D-40225 Dusseldorf, Germany
关键词
multipartite QKD; single-photon interference; conference key agreement; W-state; finite-key; TF-QKD;
D O I
10.1088/1367-2630/ab573e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The intense research activity on Twin-Field (TF) quantum key distribution (QKD) is motivated by the fact that two users can establish a secret key by relying on single-photon interference in an untrusted node. Thanks to this feature, variants of the protocol have been proven to beat the point-to-point private capacity of a lossy quantum channel. Here we generalize the main idea of the TF-QKD protocol introduced by Curty et al to the multipartite scenario, by devising a conference key agreement (CKA) where the users simultaneously distill a secret conference key through single-photon interference. The new CKA is better suited to high-loss scenarios than previous multipartite QKD schemes and it employs for the first time a W-class state as its entanglement resource. We prove the protocol's security in the finite-key regime and under general attacks. We also compare its performance with the iterative use of bipartite QKD protocols and show that our truly multipartite scheme can be advantageous, depending on the loss and on the state preparation.
引用
收藏
页数:19
相关论文
共 58 条
[1]   One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment [J].
Abobeih, M. H. ;
Cramer, J. ;
Bakker, M. A. ;
Kalb, N. ;
Markham, M. ;
Twitchen, D. J. ;
Taminiau, T. H. .
NATURE COMMUNICATIONS, 2018, 9
[2]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[3]   Multipartite secret key distillation and bound entanglement [J].
Augusiak, Remigiusz ;
Horodecki, Pawel .
PHYSICAL REVIEW A, 2009, 80 (04)
[4]   All-photonic intercity quantum key distribution [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Munro, William J. .
NATURE COMMUNICATIONS, 2015, 6
[5]   Fundamental limitation on quantum broadcast networks [J].
Bauml, Stefan ;
Azuma, Koji .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02)
[6]  
Bennett C. H., 1984, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, P175, DOI [10.1016/j.tcs.2011.08.039, DOI 10.1016/J.TCS.2014.05.025]
[7]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[8]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[9]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[10]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)