Complex solitary waves and soliton trains in KdV and mKdV equations

被引:12
作者
Modak, Subhrajit [1 ]
Singh, Akhil Pratap [2 ]
Panigrahi, Prasanta Kumar [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741246, W Bengal, India
[2] BITS Pilani, KK Birla Goa Campus, Pilani 403726, Goa, India
关键词
ION-ACOUSTIC SOLITON; DE-VRIES EQUATION; BACKLUND TRANSFORMATION; TRANSMISSION;
D O I
10.1140/epjb/e2016-70130-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We demonstrate the existence of complex solitary wave and periodic solutions of the Kortewegde Vries (KdV) and modified Korteweg-de Vries (mKdV) equations. The solutions of the KdV (mKdV) equation appear in complex-conjugate pairs and are even (odd) under the simultaneous actions of parity (P) and time-reversal (T) operations. The corresponding localized solitons are hydrodynamic analogs of Bloch soliton in magnetic system, with asymptotically vanishing intensity. The PT-odd complex soliton solution is shown to be iso-spectrally connected to the fundamental sech(2) solution through supersymmetry. Physically, these complex solutions are analogous to the experimentally observed grey solitons of non-liner Schrodinger equation, governing the dynamics of shallow water waves and hence may also find physical verification.
引用
收藏
页数:4
相关论文
共 50 条
[1]  
Abhinav K., 2011, ANN PHYS, V325, P6
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[3]  
Akbari-Moghnjoughi M., 2015, PHYS PLASMAS, V22
[4]  
Bagchi B., 1988, J PHYS A, V21, pL195
[5]  
Bar'yakhtar V. G., 1994, DYNAMICS TOPOLOGICAL
[6]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[8]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[9]  
Chadan K, 2012, Inverse problems in quantum scattering theory
[10]  
Cooper F., 2001, Supersymmetry in Quantum Mechanics, pxii+210