Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review

被引:84
|
作者
Vidal, Joao V. [1 ,2 ,3 ]
Slabov, Vladislav [1 ,2 ]
Kholkin, Andrei L. [1 ,2 ,4 ]
Soares dos Santos, Marco P. [5 ]
机构
[1] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
[4] Natl Univ Sci & Technol MISIS, Lab Funct Low Dimens Struct, Moscow, Russia
[5] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Dept Mech Engn, P-3810193 Aveiro, Portugal
关键词
E-TENG; Hybrid triboelectric-electromagnetic; Nanogenerators; Energy harvesting; SCAVENGING BIOMECHANICAL ENERGY; WAVE ENERGY; BLUE ENERGY; DIAMAGNETIC LEVITATION; CONVERSION EFFICIENCY; CHARGE-TRANSFER; GENERATOR; CONTACT; CELL; ELECTRODE;
D O I
10.1007/s40820-021-00713-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Motion-driven electromagnetic-triboelectric energy generators (E-TENGs) hold a great potential to provide higher voltages, higher currents and wider operating bandwidths than both electromagnetic and triboelectric generators standing alone. Therefore, they are promising solutions to autonomously supply a broad range of highly sophisticated devices. This paper provides a thorough review focused on major recent breakthroughs in the area of electromagnetic-triboelectric vibrational energy harvesting. A detailed analysis was conducted on various architectures including rotational, pendulum, linear, sliding, cantilever, flexible blade, multidimensional and magnetoelectric, and the following hybrid technologies. They enable highly efficient ways to harvest electric energy from many forms of vibrational, rotational, biomechanical, wave, wind and thermal sources, among others. Open-circuit voltages up to 75 V, short-circuit currents up to 60 mA and instantaneous power up to 144 mW were already achieved by these nanogenerators. Their transduction mechanisms, including proposed models to make intelligible the involved physical phenomena, are also overviewed here. A comprehensive analysis was performed to compare their respective construction designs, external excitations and electric outputs. The results highlight the potential of hybrid E-TENGs to convert unused mechanical motion into electric energy for both large- and small-scale applications. Finally, this paper proposes future research directions toward optimization of energy conversion efficiency, power management, durability and stability, packaging, energy storage, operation input, research of transduction mechanisms, quantitative standardization, system integration, miniaturization and multi-energy hybrid cells.
引用
收藏
页数:58
相关论文
共 50 条
  • [31] Three-Dimensional Piezoelectric-Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting
    Unsal, Omer Faruk
    Bedeloglu, Ayse C. elik
    ACS APPLIED NANO MATERIALS, 2023, 6 (16) : 14656 - 14668
  • [32] Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy
    Qiu, Yu
    Yang, Dechao
    Li, Bing
    Shao, Shuai
    Hu, Lizhong
    RSC ADVANCES, 2018, 8 (46) : 26243 - 26250
  • [33] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15 (08) : 388 - 411
  • [34] Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators
    Pang, Yaokun
    Cao, Yunteng
    Derakhshani, Masoud
    Fang, Yuhui
    Wang, Zhong Lin
    Cao, Changyong
    MATTER, 2021, 4 (01) : 116 - 143
  • [35] High-Performance Rotating Structure Triboelectric-Electromagnetic Hybrid Nanogenerator for Environmental Wind Energy Harvesting
    Cao, Zhi
    Zhou, Hanlin
    Han, Chengcheng
    Jing, Haitao
    Wang, Zhong Lin
    Wu, Zhiyi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (45) : 62254 - 62263
  • [36] Triboelectric nanogenerators: Harvesting mechanical energy using polymer films
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [37] Hybrid Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting and Walking Sensing
    Nazar, Ali Matin
    Egbe, King-James Idala
    Jiao, Pengcheng
    ENERGY TECHNOLOGY, 2022, 10 (06)
  • [38] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Shan, Chuncai
    Li, Kaixian
    Cheng, Yuntao
    Hu, Chenguo
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [39] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15
  • [40] Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvesting
    Zhong, Wei
    Xu, Bingang
    Gao, Yuanyuan
    NANO ENERGY, 2022, 92