Quantum Metrology for Non-Markovian Processes

被引:33
作者
Altherr, Anian [1 ]
Yang, Yuxiang [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Univ Hong Kong, Dept Comp Sci, QICI Quantum Informat & Computat Initiat, Pokfulam Rd, Hong Kong, Peoples R China
基金
瑞士国家科学基金会;
关键词
ULTIMATE PRECISION LIMIT;
D O I
10.1103/PhysRevLett.127.060501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology is a rapidly developing branch of quantum technologies. While various theories have been established on quantum metrology for Markovian processes, i.e., quantum channel estimation, quantum metrology for non-Markovian processes is much less explored. In this Letter, we establish a general framework of non-Markovian quantum metrology. For any parametrized non-Markovian process on a finite-dimensional system, we derive a formula for the maximal amount of quantum Fisher information that can be extracted from it by an optimally controlled probe state. In addition, we design an algorithm that evaluates this quantum Fisher information via semidefinite programming. We apply our framework to noisy frequency estimation, where we find that the optimal performance of quantum metrology is better in the non-Markovian scenario than in the Markovian scenario and explore the possibility of efficient sensing via simple variational circuits.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Evaluating the Holevo Cramer-Rao Bound for Multiparameter Quantum Metrology [J].
Albarelli, Francesco ;
Friel, Jamie F. ;
Datta, Animesh .
PHYSICAL REVIEW LETTERS, 2019, 123 (20)
[2]  
[Anonymous], 2021, COMB ESTIMATION
[3]   Non-Markovian effect on the precision of parameter estimation [J].
Berrada, K. .
PHYSICAL REVIEW A, 2013, 88 (03)
[4]   Quantum Metrology in Non-Markovian Environments [J].
Chin, Alex W. ;
Huelga, Susana F. ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2012, 109 (23)
[5]   Transforming quantum operations: Quantum supermaps [J].
Chiribella, G. ;
D'Ariano, G. M. ;
Perinotti, P. .
EPL, 2008, 83 (03)
[6]   Quantum circuit architecture [J].
Chiribella, G. ;
D'Ariano, G. M. ;
Perinotti, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[7]   Optimal quantum networks and one-shot entropies [J].
Chiribella, Giulio ;
Ebler, Daniel .
NEW JOURNAL OF PHYSICS, 2016, 18
[9]   Memory Effects in Quantum Channel Discrimination [J].
Chiribella, Giulio ;
D'Ariano, Giacomo M. ;
Perinotti, Paolo .
PHYSICAL REVIEW LETTERS, 2008, 101 (18)
[10]   Theoretical framework for quantum networks [J].
Chiribella, Giulio ;
D'Ariano, Giacomo Mauro ;
Perinotti, Paolo .
PHYSICAL REVIEW A, 2009, 80 (02)