BCINet: An Optimized Convolutional Neural Network for EEG-Based Brain-Computer Interface Applications

被引:0
作者
Singh, Avinash Kumar [1 ]
Tao, Xian [2 ]
机构
[1] Univ Technol Sydney, Australian Artificial Intelligence Inst, Ultimo, Australia
[2] Chinese Acad Sci, Res Ctr Precis Sensing & Control, Inst Automat, Beijing, Peoples R China
来源
2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2020年
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Convolutional neural network; deep learning; EEG; brain-computer interface; MOBI; cognitive conflict; BCINet;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
EEG based brain-computer interface (BCI) allows people to communicate and control external devices using brain signals. The application of BCI ranges from assisting in disabilities to interaction in a virtual reality environment by detecting user intent from EEG signals. The major problem lies in correctly classifying the EEG signals to issue a command with minimal requirement of pre-processing and resources. To overcome these problems, we have proposed, BCINet, a novel optimized convolution neural network model. We have evaluated the BCINet over two EEG based BCI datasets collected in mobile brain/body imaging (MoBI) settings. BCINet significantly outperforms the classification for two datasets with up to 20% increase in accuracy while fewer than 75% trainable parameters. Such a model with improved performance while less requirement of computation resources opens the possibilities for the development of several real-world BCI applications with high performance.
引用
收藏
页码:582 / 587
页数:6
相关论文
共 32 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]   Convolutional Neural Networks for Speech Recognition [J].
Abdel-Hamid, Ossama ;
Mohamed, Abdel-Rahman ;
Jiang, Hui ;
Deng, Li ;
Penn, Gerald ;
Yu, Dong .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (10) :1533-1545
[3]   Effect of Mechanical Resistance on Cognitive Conflict in Physical Human-Robot Collaboration [J].
Aldini, Stefano ;
Akella, Ashlesha ;
Singh, Avinash K. ;
Wang, Yu-Kai ;
Carmichael, Marc ;
Liu, Dikai ;
Lin, Chin-Teng .
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, :CP1-CP46
[4]  
[Anonymous], 2015, ACS SYM SER
[5]  
[Anonymous], 2015, ARXIV PREPRINT ARXIV
[6]   Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view [J].
Burle, Boris ;
Spieser, Laure ;
Roger, Clernence ;
Casini, Laurence ;
Hasbroucq, Thierry ;
Vidal, Franck .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2015, 97 (03) :210-220
[7]   Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces [J].
Cecotti, Hubert ;
Graeser, Axel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :433-445
[8]   Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks [J].
Chai, Rifai ;
Ling, Sai Ho ;
San, Phyo Phyo ;
Naik, Ganesh R. ;
Nguyen, Tuan N. ;
Tran, Yvonne ;
Craig, Ashley ;
Nguyen, Hung T. .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[9]   Deep learning for electroencephalogram (EEG) classification tasks: a review [J].
Craik, Alexander ;
He, Yongtian ;
Contreras-Vidal, Jose L. .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
[10]   CIRCNN: Accelerating and Compressing Deep Neural Networks Using Block-Circulant Weight Matrices [J].
Ding, Caiwen ;
Liao, Siyu ;
Wang, Yanzhi ;
Li, Zhe ;
Liu, Ning ;
Zhuo, Youwei ;
Wang, Chao ;
Qian, Xuehai ;
Bai, Yu ;
Yuan, Geng ;
Ma, Xiaolong ;
Zhang, Yipeng ;
Tang, Jian ;
Qiu, Qinru ;
Lin, Xue ;
Yuan, Bo .
50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, :395-408