Frames and coorbit theory on homogeneous spaces with a special guidance on the sphere

被引:10
作者
Dahlke, Stephan
Steidl, Gabriele
Teschke, Gerd
机构
[1] Univ Marburg, Fachbereich Math & Informat, D-35032 Marburg, Germany
[2] Univ Mannheim, Fak Math & Informat, D-68131 Mannheim, Germany
[3] Zuse Inst Berlin, D-14195 Berlin, Germany
关键词
square integrable group representations; time-frequency analysis; atomic decompositions; (Banach) frames; homogeneous spaces; weighted coorbit spaces; INTEGRABLE GROUP-REPRESENTATIONS; ATOMIC DECOMPOSITIONS; BANACH-SPACES;
D O I
10.1007/s00041-006-6901-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces on homogeneous spaces, which consist of functions having their generalized wavelet transform in some weighted L-p space. We also describe natural ways of discretizing those wavelet transforms, or equivalently to obtain atomic decompositions and Banach frames for the corresponding coorbit spaces. Based on these facts we treat aspects of nonlinear approximation and show how the new theory can be applied to the Gabor transform on spheres. For the S-1 we exhibit concrete examples of admissible Gabor atoms which art very closely related to uncertainty minimizing states.
引用
收藏
页码:387 / 404
页数:18
相关论文
共 18 条
[1]  
[Anonymous], COHERENT STATES WAVE
[2]   Weighted Coorbit spaces and Banach frames on homogeneous spaees [J].
Dahlke, S ;
Steidl, G ;
Teschke, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (05) :507-539
[3]   Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere [J].
Dahlke, S ;
Steidl, G ;
Teschke, G .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (1-2) :147-180
[4]   THE AFFINE UNCERTAINTY PRINCIPLE IN ONE AND 2 DIMENSIONS [J].
DAHLKE, S ;
MAASS, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) :293-305
[5]  
DAHLKE S, 2005, GEN COORBIT THEORY B
[6]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[7]   Some remarks on greedy algorithms [J].
DeVore, RA ;
Temlyakov, VN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (2-3) :173-187
[8]   BANACH-SPACES OF DISTRIBUTIONS DEFINED BY DECOMPOSITION METHODS .1. [J].
FEICHTINGER, HG ;
GROBNER, P .
MATHEMATISCHE NACHRICHTEN, 1985, 123 :97-120
[9]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .2. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
MONATSHEFTE FUR MATHEMATIK, 1989, 108 (2-3) :129-148
[10]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .1. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) :307-340