HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway

被引:104
作者
Chen, Jianxu [1 ]
Chen, Jiandi [2 ]
Huang, Jiaxin [3 ]
Li, Zhanyu [4 ]
Gong, Yihang [1 ]
Zou, Baojia [1 ]
Liu, Xialei [1 ]
Ding, Lei [1 ]
Li, Peiping [1 ]
Zhu, Zhiquan [5 ]
Zhang, Baimeng [1 ]
Guo, Hui [6 ]
Cai, Chaonong [1 ]
Li, Jian [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Hepatobiliary Surg, Zhuhai, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Endocrinol, Zhuhai, Peoples R China
[3] Sichuan Univ, West China Hosp, Canc Ctr, Dept Med Oncol, Chengdu, Sichuan, Peoples R China
[4] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Pathol, Zhuhai, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 5, Canc Ctr, Dept Thorac Oncol, Zhuhai, Peoples R China
[6] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Intervent Radiol, Zhuhai, Peoples R China
来源
AGING-US | 2019年 / 11卷 / 23期
关键词
hepatocellular carcinoma; non-alcoholic fatty liver disease; microenvironment; HIF-2; alpha; lipid metabolism; HEPATOCELLULAR-CARCINOMA; TUMOR-GROWTH; LIVER; METABOLISM; ACID; ACCUMULATION; INFLAMMATION; EXPRESSION; STEATOHEPATITIS; TUMORIGENESIS;
D O I
10.18632/aging.102488
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) is a relevant risk factor for developing hepatocellular carcinoma (HCC). Steatohepatitic HCC (SH-HCC), characterized by HCC with steatosis, is influenced by lipid metabolism disorders. A hypoxic microenvironment is common in HCC and affects lipid metabolism. However, whether hypoxia-induced HIF-2 alpha upregulation exacerbates lipid accumulation to contribute to SH-HCC progression remains unclear. In this study, we demonstrated that HIF-2 alpha was elevated in tissues from NAFLD-HCC patients and was associated with survival. Under hypoxic conditions, upregulated HIF-2 alpha was accompanied by lipid accumulation and PI3K-AKT-mTOR pathway activation. HIF-2 alpha knockdown (KD) in steatotic HCC ameliorated triglyceride accumulation and steatosis. HIF-2 alpha-KD steatotic HCC showed minimal lipid synthesis in a hypoxic environment, which contributes to a reduction in malignant behaviours. However, treatment with MHY1485 restored these behaviours. STAM mice, a mouse model that develops NAFLD-HCC, exhibit more rapid tumour progression upon exposure to hypoxia. STAM mice treated with INK-128 presented abrogated mTOR expression and tumour progression under hypoxic conditions with lower triglycerides and steatosis. In conclusion, in a hypoxic microenvironment, HIF-2 alpha upregulation promotes steatotic HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Therefore, HIF-2 alpha can be a biomarker and target in developing specific therapeutic measures for NAFLD-HCC patients.
引用
收藏
页码:10839 / 10860
页数:22
相关论文
共 52 条
[1]   HYPOXIA AND METABOLISM SERIES - TIMELINE The impact of O2 availability on human cancer [J].
Bertout, Jessica A. ;
Patel, Shetal A. ;
Simon, M. Celeste .
NATURE REVIEWS CANCER, 2008, 8 (12) :967-975
[2]  
Birner P, 2000, CANCER RES, V60, P4693
[3]   Integrated Metabolite and Gene Expression Profiles Identify Lipid Biomarkers Associated With Progression of Hepatocellular Carcinoma and Patient Outcomes [J].
Budhu, Anuradha ;
Roessler, Stephanie ;
Zhao, Xuelian ;
Yu, Zhipeng ;
Forgues, Marshonna ;
Ji, Junfang ;
Karoly, Edward ;
Qin, Lun-Xiu ;
Ye, Qing-Hai ;
Jia, Hu-Liang ;
Fan, Jia ;
Sun, Hui-Chuan ;
Tang, Zhao-You ;
Wang, Xin Wei .
GASTROENTEROLOGY, 2013, 144 (05) :1066-+
[4]   Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism [J].
Cai, Yanyan ;
Crowther, Jonathan ;
Pastor, Tibor ;
Asbagh, Layka Abbasi ;
Baietti, Maria Francesca ;
De Troyer, Magdalena ;
Vazquez, Iria ;
Talebi, Ali ;
Renzi, Fabrizio ;
Dehairs, Jonas ;
Swinnen, Johannes V. ;
Sablina, Anna A. .
CANCER CELL, 2016, 29 (05) :751-766
[5]   Hypoxia Induces Dysregulation of Lipid Metabolism in HepG2 Cells via Activation of HIF-2α [J].
Cao, Risheng ;
Zhao, Xiaodan ;
Li, Shuo ;
Zhou, Haiyun ;
Chen, Weixu ;
Ren, Lihua ;
Zhou, Xiqiao ;
Zheng, Hongjie ;
Shi, Ruihua .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2014, 34 (05) :1427-1441
[6]   Integrative Kinome Profiling Identifies mTORC1/2 Inhibition as Treatment Strategy in Ovarian Clear Cell Carcinoma [J].
Caumanns, Joseph J. ;
Berns, Katrien ;
Wisman, G. Bea A. ;
Fehrmann, Rudolf S. N. ;
Tomar, Tushar ;
Klip, Harry ;
Meersma, Gert J. ;
Hijmans, E. Marielle ;
Gennissen, Annemiek M. C. ;
Duiker, Evelien W. ;
Weening, Desiree ;
Itamochi, Hiroaki ;
Kluin, Roelof J. C. ;
Reyners, Anna K. L. ;
Birrer, Michael J. ;
Salvesen, Helga B. ;
Vergote, Ignace ;
van Nieuwenhuysen, Els ;
Brenton, James ;
Braicu, E. Ioana ;
Kupryjanczyk, Jolanta ;
Spiewankiewicz, Beata ;
Mittempergher, Lorenza ;
Bernards, Rene ;
van der Zee, Ate G. J. ;
de Jong, Steven .
CLINICAL CANCER RESEARCH, 2018, 24 (16) :3928-3940
[7]   KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing [J].
Chen, Jie ;
Ou, Yuhui ;
Yang, Yanyan ;
Li, Wen ;
Xu, Ye ;
Xie, Yuntao ;
Liu, Ying .
NATURE, 2018, 557 (7706) :585-+
[8]   Cellular Fatty Acid Metabolism and Cancer [J].
Currie, Erin ;
Schulze, Almut ;
Zechner, Rudolf ;
Walther, Tobias C. ;
Farese, Robert V., Jr. .
CELL METABOLISM, 2013, 18 (02) :153-161
[9]  
Donnelly KL, 2005, J CLIN INVEST, V115, P1343, DOI [10.1172/JCI200523621, 10.1172/JCI23621]
[10]   mTORC1 Upregulation Leads to Accumulation of the Oncometabolite Fumarate in a Mouse Model of Renal Cell Carcinoma [J].
Drusian, Luca ;
Nigro, Elisa Agnese ;
Mannella, Valeria ;
Pagliarini, Roberto ;
Pema, Monika ;
Costa, Ana S. H. ;
Benigni, Fabio ;
Larcher, Alessandro ;
Chiaravalli, Marco ;
Gaude, Edoardo ;
Montorsi, Francesco ;
Capitanio, Umberto ;
Musco, Giovanna ;
Frezza, Christian ;
Boletta, Alessandra .
CELL REPORTS, 2018, 24 (05) :1093-+