Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping

被引:123
作者
Gaponenko, Maxim S. [1 ]
Lutich, Andrey A. [2 ]
Tolstik, Nikolai A. [1 ]
Onushchenko, Alexei A. [3 ]
Malyarevich, Alexander M. [1 ]
Petrov, Eugene P. [4 ]
Yumashev, Konstantin V. [1 ]
机构
[1] Belarusian Natl Tech Univ, Ctr Opt Mat & Technol, Minsk 220013, BELARUS
[2] Univ Munich, Dept Phys, Photon & Optoelect Grp, D-80799 Munich, Germany
[3] Res & Technol Inst Opt Mat Sci, St Petersburg 193171, Russia
[4] Tech Univ Dresden, BIOTEC, D-01307 Dresden, Germany
关键词
SEMICONDUCTOR NANOCRYSTALS; SIZE DEPENDENCE; LEAD SULFIDE; DARK-EXCITON; LINE WIDTHS; ENERGY-GAP; EMISSION; DYNAMICS; SPECTROSCOPY; RELAXATION;
D O I
10.1103/PhysRevB.82.125320
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report experimental evidence of the lowest exciton state splitting and carrier trapping in PbS quantum dots (QDs) in glass matrix. Our measurements of photoluminescence (PL) of PbS QDs using steady-state and time-resolved PL spectroscopy reveal strong temperature dependences of the PL intensity and decay kinetics. We find that consistent quantitative description of our experimental results can be achieved using a simple model taking into account the lowest 1S-1S exciton state splitting and multiphonon-assisted carrier trapping to states outside a PbS QD. Using our model, we estimate the lowest exciton splitting energy and lifetimes of the dark and bright exciton states of PbS QDs. Consistent with our model, the PL transition energy of PbS QDs deviates at higher temperatures from the one predicted based on the bulk PbSband- gap dependence due to the lowest 1S- 1S exciton state splitting. Temperature- induced broadening of the PL spectrum of PbS QDs is explained by the exciton- phonon interaction.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Confinement effects in PbSe quantum wells and nanocrystals [J].
Allan, G ;
Delerue, C .
PHYSICAL REVIEW B, 2004, 70 (24) :1-9
[3]   The excitonic exchange splitting and radiative lifetime in PbSe quantum dots [J].
An, J. M. ;
Franceschetti, A. ;
Zunger, A. .
NANO LETTERS, 2007, 7 (07) :2129-2135
[4]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[6]   Size-dependent radiative emission of PbS quantum dots embedded in Nafion membrane [J].
Chen, Y. ;
Yu, D. ;
Li, B. ;
Chen, X. ;
Dong, Y. ;
Zhang, M. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 95 (01) :173-177
[7]   Resonant energy transfer in PbS quantum dots [J].
Clark, Stephen W. ;
Harbold, Jeffrey M. ;
Wise, Frank W. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20) :7302-7305
[8]   Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime [J].
Crooker, SA ;
Barrick, T ;
Hollingsworth, JA ;
Klimov, VI .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2793-2795
[9]   Evidence for a "dark exciton" state of PbS nanocrystals in a silicate glass [J].
De Lamaëstre, RE ;
Bernas, H ;
Pacifici, D ;
Franzo, G ;
Priolo, F .
APPLIED PHYSICS LETTERS, 2006, 88 (18)
[10]   Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots [J].
Donega, C. de Mello ;
Bode, M. ;
Meijerink, A. .
PHYSICAL REVIEW B, 2006, 74 (08)