The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks

被引:104
作者
Dubois, Didier [1 ,2 ,3 ]
Liu, Weiru [3 ]
Ma, Jianbing [4 ]
Prade, Henri [1 ,2 ]
机构
[1] CNRS, IRIT, 118 Route Narbonne, F-31062 Toulouse 09, France
[2] Univ Toulouse, 118 Route Narbonne, F-31062 Toulouse 09, France
[3] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast BT7 1NN, Antrim, North Ireland
[4] Coventry Univ, Sch Comp Elect & Maths, Coventry CV1 5FB, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Information fusion; Knowledge-based merging; Evidence theory; Combination rules; Plausibility orderings; Possibility theory; Imprecise probability; EXPERT JUDGMENTS; BELIEF FUNCTIONS; FUZZY-SETS; COMBINATION; CONFLICT; PROBABILITIES; SEMANTICS; REVISION; VIEW;
D O I
10.1016/j.inffus.2016.02.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:12 / 39
页数:28
相关论文
共 118 条
[1]   ON THE LOGIC OF THEORY CHANGE - PARTIAL MEET CONTRACTION AND REVISION FUNCTIONS [J].
ALCHOURRON, CE ;
GARDENFORS, P ;
MAKINSON, D .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (02) :510-530
[2]  
[Anonymous], 2002, P 8 INT C PRINCIPLES
[3]  
[Anonymous], P 16 C UNC ART INT U
[4]  
[Anonymous], 1977, Modern uses of multiple-valued logic, DOI [DOI 10.1007/978-94-010-1161-72, 10.1007/978-94-010-1161-7_2, DOI 10.1007/978-94-010-1161-7_2]
[5]  
[Anonymous], P 9 EUR C SYMB QUANT
[6]  
[Anonymous], 1998, AGGREGATION FUSION I
[7]  
[Anonymous], DATA FUSION MACHINE
[8]  
[Anonymous], FUNDAM INF
[9]  
[Anonymous], 2008, AGGREGATION FUNCTION
[10]  
[Anonymous], 1991, Monographs on Statistics and Applied Probability