GEVREY STABILITY OF PRANDTL EXPANSIONS FOR 2-DIMENSIONAL NAVIER-STOKES FLOWS

被引:66
作者
Gerard-Varet, David [1 ]
Maekawa, Yasunori [2 ]
Masmoudi, Nader [3 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, Paris, France
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
[3] NYU, Courant Inst Math Sci, New York, NY USA
基金
日本学术振兴会;
关键词
ZERO VISCOSITY LIMIT; VANISHING VISCOSITY; ANALYTIC SOLUTIONS; WELL-POSEDNESS; ILL-POSEDNESS; SPECTRAL INSTABILITY; HALF-SPACE; EQUATIONS; EXISTENCE; EULER;
D O I
10.1215/00127094-2018-0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the stability of boundary layer solutions of the 2-dimensional incompressible Navier-Stokes equations. We consider shear flow solutions of Prandtl type: u(v) (t, x, y) = (U-E(t , y) + U-BL (t, y/root v), 0), 0 < v << 1. We show that if U BL is mono- tonic and concave in Y = y/root v, then is stable over some time interval (0, T), T independent of v, under perturbations with Gevrey regularity in x and Sobolev regularity in y. We improve in this way the classical stability results of Sammartino and Caflisch in analytic class (both in x and y). Moreover, in the case where U-BL is steady and strictly concave, our Gevrey exponent for stability is optimal. The proof relies on new and sharp resolvent estimates for the linearized Orr-Sommerfeld operator.
引用
收藏
页码:2531 / 2631
页数:101
相关论文
共 27 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
[Anonymous], 2004, Camb. Math. Libr.
[3]  
CHORIN A. J., 1994, APPL MATH SCI, V103, DOI 10.1007/978-1-4419-8728-0
[4]  
Dieudonne J., 1968, CALCUL INFINITESIMAL
[5]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[6]  
GERARD-VARET D., 2010, SEMIN EQU DERIV PART, V21
[7]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
[8]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[9]  
Grenier E, 2000, COMMUN PUR APPL MATH, V53, P1067
[10]  
GRENIER E., ARXIV170505323V1MATH