Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries

被引:48
作者
Feng, Jianwen [1 ]
Ao, Xiaohu [1 ]
Lei, Zhiwen [1 ]
Wang, Jun [2 ]
Deng, Yonghong [2 ]
Wang, Chaoyang [1 ]
机构
[1] South China Univ Technol, Res Inst Mat Sci, Guangzhou 510640, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Acad Adv Interdisciplinary Studies, Dept Mat Sci & Engn, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
关键词
Solid polymer electrolyte; Halloysite nanotube; Comb-like polymer; All solid state; Lithium metal battery; ELECTROCHEMICAL PERFORMANCE; HALLOYSITE NANOTUBES; IONIC-CONDUCTIVITY; STATE BATTERIES; COPOLYMER; PHASE; PEO;
D O I
10.1016/j.electacta.2020.135995
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid polymer electrolytes (SPEs) shows increasing promise for all-solid-state batteries due to their high safety, high flexibility and low interfacial resistance. However, the low ionic conductivity at room temperature is the main barrier hindering the practical application of SPEs. Herein, hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer electrolyte (HCPE) is fabricated by in-situ UV activated radical polymerization, which exhibits an improved ionic conductivity of 5.62 x 10(-5) S cm(-1) at room temperature. The introducing of the branched structure helps reduce the regularity of polymer chains and decreases the proportion of crystalline regions of polymers. Moreover, the nanofiller feature and the special structure of halloysite nanotube (HNT) are beneficial for dissociating lithium salt, thus improving the ionic conductivity. Meanwhile, the designed composite solid-state electrolyte demonstrates high thermal stability and compatibility with Li metal, high electrochemical stability. The all-solid-state Li/HCPE/LiFePO4 cell delivers high rate capability and stable cycling performance at room temperature, which proves the great potential of HCPE for all-solid-state Li metal batteries. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes [J].
Aldalur, Itziar ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Rodriguez-Martinez, Lide M. ;
Zhang, Heng ;
Armand, Michel .
JOURNAL OF POWER SOURCES, 2018, 383 :144-149
[2]   UV-cured methacrylate based polymer composite electrolyte for metallic lithium batteries [J].
Amici, J. ;
Romanin, S. ;
Alidoost, M. ;
Versaci, D. ;
Francia, C. ;
Smeacetto, F. ;
Bodoardo, S. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 837 :103-107
[3]  
[Anonymous], 2019, BATTERIES BASEL, DOI DOI 10.3390/BATTERIES5010019
[4]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[5]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[6]   CONDUCTIVITY AND TRANSFERENCE NUMBER MEASUREMENTS ON POLYMER ELECTROLYTES [J].
BRUCE, PG ;
EVANS, J ;
VINCENT, CA .
SOLID STATE IONICS, 1988, 28 :918-922
[7]   Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode [J].
Calpa, Marcela ;
Rosero-Navarro, Nataly Carolina ;
Miura, Akira ;
Tadanaga, Kiyoharu .
ELECTROCHIMICA ACTA, 2019, 296 :473-480
[8]   One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery [J].
Chen, Shaojie ;
Wang, Junye ;
Wei, Zhenyao ;
Zhang, Zhihua ;
Deng, Yonghong ;
Yao, Xiayin ;
Xu, Xiaoxiong .
JOURNAL OF POWER SOURCES, 2019, 431 :1-7
[9]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[10]   How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes? [J].
Cheng, Shan ;
Smith, Derrick M. ;
Li, Christopher Y. .
MACROMOLECULES, 2014, 47 (12) :3978-3986