Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35

被引:48
作者
Su, I-An [1 ]
Tseng, Ko-Kai [1 ]
Yeh, Jien-Wei [1 ,2 ]
El-Sayed, Badr [3 ,4 ]
Liu, Chia-Heng [5 ]
Wang, Shing-Hoa [5 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, High Entropy Mat Ctr, Hsinchu 300044, Taiwan
[3] Petr Marine Serv Co, Cairo, Egypt
[4] Alexandria Univ, Inst Grad Studies & Res, Dept Mat Sci, Alexandria, Egypt
[5] Natl Taiwan Ocean Univ, Dept Mech Engn, Keelung 202301, Taiwan
关键词
X-ray diffraction (XRD); Refractory metals; Plastic deformation; Phase transformations; Entropy alloy; PHASE; TITANIUM; OMEGA;
D O I
10.1016/j.scriptamat.2021.114225
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A metastable beta-type medium-entropy refractory alloy, Hf20Nb10Ti35Zr35, was designed to have a ductile BCC structure in the as-solution-treated state. The alloy was aged to achieve the combinations of strength and ductility. The strengthening mechanisms included transformation-induced plasticity, twinning-induced plasticity and precipitation strengthening. These multiple strengthening mechanisms can serve as a basis for alloy design and the improvement of the mechanical properties of alloys. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 10 条
[1]   FORMATION OF OMEGA PHASE IN TITANIUM AND ZIRCONIUM ALLOYS - A REVIEW [J].
HICKMAN, BS .
JOURNAL OF MATERIALS SCIENCE, 1969, 4 (06) :554-&
[2]   Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J].
Huang, Hailong ;
Wu, Yuan ;
He, Junyang ;
Wang, Hui ;
Liu, Xiongjun ;
An, Ke ;
Wu, Wei ;
Lu, Zhaoping .
ADVANCED MATERIALS, 2017, 29 (30)
[3]   A Review of Metastable Beta Titanium Alloys [J].
Kolli, R. Prakash ;
Devaraj, Arun .
METALS, 2018, 8 (07)
[4]   New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys [J].
Li, Tong ;
Kent, Damon ;
Sha, Gang. ;
Stephenson, Leigh T. ;
Ceguerra, Anna V. ;
Ringer, Simon P. ;
Dargusch, Matthew S. ;
Cairney, Julie M. .
ACTA MATERIALIA, 2016, 106 :353-366
[5]   Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J].
Lin, Qingyun ;
Liu, Junpeng ;
An, Xianghai ;
Wang, Hao ;
Zhang, Yong ;
Liao, Xiaozhou .
MATERIALS RESEARCH LETTERS, 2018, 6 (04) :236-243
[6]  
Reed-Hill R., 1994, COMP BOSTON, P853
[7]   Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J].
Senkov, O. N. ;
Scott, J. M. ;
Senkova, S. V. ;
Miracle, D. B. ;
Woodward, C. F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (20) :6043-6048
[8]   Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J].
Senkov, O. N. ;
Wilks, G. B. ;
Scott, J. M. ;
Miracle, D. B. .
INTERMETALLICS, 2011, 19 (05) :698-706
[9]   Refractory high-entropy alloys [J].
Senkov, O. N. ;
Wilks, G. B. ;
Miracle, D. B. ;
Chuang, C. P. ;
Liaw, P. K. .
INTERMETALLICS, 2010, 18 (09) :1758-1765
[10]   Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J].
Yeh, JW ;
Chen, SK ;
Lin, SJ ;
Gan, JY ;
Chin, TS ;
Shun, TT ;
Tsau, CH ;
Chang, SY .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (05) :299-303