Deformed in-medium similarity renormalization group

被引:17
作者
Yuan, Q. [1 ,2 ]
Fan, S. Q. [1 ,2 ]
Hu, B. S. [1 ,2 ]
Li, J. G. [1 ,2 ]
Zhang, S. [1 ,2 ]
Wang, S. M. [3 ,4 ,5 ]
Sun, Z. H. [6 ]
Ma, Y. Z. [1 ,2 ]
Xu, F. R. [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[4] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China
[5] Fudan Univ, Shanghai 200438, Peoples R China
[6] Oak Ridge Natl Lab, Phys Div, POB 2009, Oak Ridge, TN 37831 USA
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1103/PhysRevC.105.L061303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In the m-scheme Hartree-Fock (HF) basis, we have developed an ab initio deformed single-reference in-medium similarity renormalization group (IMSRG) approach for open-shell nuclei. A deformed wave function may be more efficient in describing the deformed nucleus. The broken rotational symmetry can be restored using the angular momentum projection. However, a full angular momentum projection at the IMSRG level is still a challenge in both theory itself and computation. The angular momentum restoration mainly recaptures the static correlations, and in the present work we estimate the angular momentum projection effect by projecting the HF state as a leading-order approximation. As a test ground, we have calculated the deformed Be-8,Be-10 isotopes with the optimized chiral interaction NNLOopt. The results are benchmarked with the no-core shell model and valence-space IMSRG calculations. Then we systematically investigate the ground-state energies and charge radii of even-even nuclei from light beryllium to medium-mass magnesium isotopes. The calculated energies are extrapolated to infinite basis space by an exponential form, and compared with extrapolated valence-space IMSRG results and experimental data.
引用
收藏
页数:7
相关论文
共 47 条
[31]   Study of in-Medium ω-Meson Properties in Ap and pA Collisions [J].
Kiselev, Yu. T. ;
Kiselev, S. M. ;
Chumakov, M. M. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (01) :150-161
[32]   Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group [J].
Tichai, A. ;
Kapas, K. ;
Miyagi, T. ;
Werner, M. A. ;
Legeza, Oe. ;
Schwenk, A. ;
Zarand, G. .
PHYSICS LETTERS B, 2024, 855
[33]   No-core Monte Carlo shell model calculations with unitary correlation operator method and similarity renormalization group [J].
Liu Lang .
CHINESE PHYSICS C, 2015, 39 (05)
[34]   IN-MEDIUM (K)over-bar- AND η-MESON INTERACTIONS AND BOUND STATES [J].
Gal, Avraham ;
Friedman, Eli ;
Barnea, Nir ;
Cieply, Ales ;
Mares, Jiri ;
Gazda, Daniel .
ACTA PHYSICA POLONICA B, 2014, 45 (03) :673-687
[35]   Hypernuclear spectra from in-medium chiral dynamics: a refined fit analysis [J].
Finelli, Paolo .
NUCLEAR PHYSICS A, 2010, 835 (1-4) :418-421
[36]   The density matrix renormalization group and nuclear structure [J].
Pittel, S. ;
Thakur, B. ;
Sandulescu, N. .
REVISTA MEXICANA DE FISICA, 2007, 53 (06) :83-85
[37]   Effect of in-medium spectral density of D and D* mesons on the J/ψ dissociation in hadronic matter [J].
Ghosh, Sabyasachi ;
Mitra, Sukanya ;
Sarkar, Sourav .
NUCLEAR PHYSICS A, 2013, 917 :71-84
[38]   Momentum broadening of an in-medium jet evolution using a light-front Hamiltonian approach [J].
Li, Meijian ;
Lappi, Tuomas ;
Zhao, Xingbo ;
Salgado, Carlos A. .
PHYSICAL REVIEW D, 2023, 108 (03)
[39]   Kaonic atoms and in-medium K - N amplitudes II: Interplay between theory and phenomenology [J].
Friedman, E. ;
Gal, A. .
NUCLEAR PHYSICS A, 2013, 899 :60-75
[40]   The density matrix renormalization group and the nuclear shell model [J].
Pittel, S. ;
Thakur, B. .
REVISTA MEXICANA DE FISICA, 2009, 55 (02) :108-113