Geostatistical Methods for Disease Mapping and Visualisation Using Data from Spatio-temporally Referenced Prevalence Surveys

被引:24
作者
Giorgi, Emanuele [1 ]
Diggle, Peter J. [1 ]
Snow, Robert W. [2 ,3 ]
Noor, Abdisalan M. [2 ]
机构
[1] Univ Lancaster, Lancaster Med Sch, Lancaster, England
[2] Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, Kenya
[3] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England
基金
英国惠康基金;
关键词
Disease mapping; Gaussian processes; geostatistics; parameter uncertainty; parsimony; prevalence; spatio-temporal models; LINEAR MIXED MODELS; CARLO MAXIMUM-LIKELIHOOD; COMPLEX SURVEY DATA; TRANSMISSION INTENSITY; COVARIANCE FUNCTIONS; BAYESIAN-INFERENCE; MALARIA INFECTION; SOUTH-AFRICA; REGRESSION; APPROXIMATIONS;
D O I
10.1111/insr.12268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.
引用
收藏
页码:571 / 597
页数:27
相关论文
共 57 条
[41]   The changing risk of Plasmodium falciparum malaria infection in Africa: 2000-10: a spatial and temporal analysis of transmission intensity [J].
Noor, Abdisalan M. ;
Kinyoki, Damaris K. ;
Mundia, Clara W. ;
Kabaria, Caroline W. ;
Mutua, Jonesmus W. ;
Alegana, Victor A. ;
Fall, Ibrahima Soce ;
Snow, Robert W. .
LANCET, 2014, 383 (9930) :1739-1747
[42]   The Importance of Scale for Spatial-Confounding Bias and Precision of Spatial Regression Estimators [J].
Paciorek, Christopher J. .
STATISTICAL SCIENCE, 2010, 25 (01) :107-125
[43]   Bayesian geostatistical modelling with informative sampling locations [J].
Pati, D. ;
Reich, B. J. ;
Dunson, D. B. .
BIOMETRIKA, 2011, 98 (01) :35-48
[44]   Spatial Modelling of Soil-Transmitted Helminth Infections in Kenya: A Disease Control Planning Tool [J].
Pullan, Rachel L. ;
Gething, Peter W. ;
Smith, Jennifer L. ;
Mwandawiro, Charles S. ;
Sturrock, Hugh J. W. ;
Gitonga, Caroline W. ;
Hay, Simon I. ;
Brooker, Simon .
PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (02)
[45]   Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Cote d'Ivoire [J].
Raso, G ;
Matthys, B ;
N'Goran, EK ;
Tanner, M ;
Vounatsou, P ;
Utzinger, J .
PARASITOLOGY, 2005, 131 :97-108
[46]   Optimal scaling of discrete approximations to Langevin diffusions [J].
Roberts, GO ;
Rosenthal, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :255-268
[47]   A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure [J].
Rodrigues, Alexandre ;
Diggle, Peter J. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) :553-567
[48]  
RStudio Inc, 2013, EASY WEB APPL R
[49]   Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations [J].
Rue, Havard ;
Martino, Sara ;
Chopin, Nicolas .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 :319-392
[50]   Introduction to the Design and Analysis of Complex Survey Data [J].
Skinner, Chris ;
Wakefield, Jon .
STATISTICAL SCIENCE, 2017, 32 (02) :165-175