Geostatistical Methods for Disease Mapping and Visualisation Using Data from Spatio-temporally Referenced Prevalence Surveys

被引:24
作者
Giorgi, Emanuele [1 ]
Diggle, Peter J. [1 ]
Snow, Robert W. [2 ,3 ]
Noor, Abdisalan M. [2 ]
机构
[1] Univ Lancaster, Lancaster Med Sch, Lancaster, England
[2] Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, Kenya
[3] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England
基金
英国惠康基金;
关键词
Disease mapping; Gaussian processes; geostatistics; parameter uncertainty; parsimony; prevalence; spatio-temporal models; LINEAR MIXED MODELS; CARLO MAXIMUM-LIKELIHOOD; COMPLEX SURVEY DATA; TRANSMISSION INTENSITY; COVARIANCE FUNCTIONS; BAYESIAN-INFERENCE; MALARIA INFECTION; SOUTH-AFRICA; REGRESSION; APPROXIMATIONS;
D O I
10.1111/insr.12268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.
引用
收藏
页码:571 / 597
页数:27
相关论文
共 57 条
[1]  
[Anonymous], 2014, ENV HLTH ATLAS ENGLA
[2]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[3]  
[Anonymous], 2002, Quantitative Methods for Current Environmental Issues, DOI DOI 10.1007/978-1-4471-0657-9_2
[4]  
[Anonymous], ASSEMBLING GEOCODED
[5]  
ANSD, 2015, SENG ENQ DEM SANTCON
[6]   Mapping Malaria Transmission Intensity in Malawi, 2000-2010 [J].
Bennett, Adam ;
Kazembe, Lawrence ;
Mathanga, Don P. ;
Kinyoki, Damaris ;
Ali, Doreen ;
Snow, Robert W. ;
Noor, Abdisalan M. .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2013, 89 (05) :840-849
[7]   Practical likelihood analysis for spatial generalized linear mixed models [J].
Bonat, Wagner Hugo ;
Ribeiro, Paulo Justiniano, Jr. .
ENVIRONMETRICS, 2016, 27 (02) :83-89
[8]   Adaptive geostatistical design and analysis for prevalence surveys [J].
Chipeta, Michael G. ;
Terlouw, Dianne J. ;
Phiri, Kamija S. ;
Diggle, Peter J. .
SPATIAL STATISTICS, 2016, 15 :70-84
[9]   Monte Carlo maximum likelihood in model-based geostatistics [J].
Christensen, OF .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) :702-718
[10]   Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania [J].
Clements, ACA ;
Lwambo, NJS ;
Blair, L ;
Nyandindi, U ;
Kaatano, G ;
Kinung'hi, S ;
Webster, JP ;
Fenwick, A ;
Brooker, S .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2006, 11 (04) :490-503