Geostatistical Methods for Disease Mapping and Visualisation Using Data from Spatio-temporally Referenced Prevalence Surveys
被引:24
|
作者:
Giorgi, Emanuele
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Lancaster Med Sch, Lancaster, EnglandUniv Lancaster, Lancaster Med Sch, Lancaster, England
Giorgi, Emanuele
[1
]
Diggle, Peter J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Lancaster Med Sch, Lancaster, EnglandUniv Lancaster, Lancaster Med Sch, Lancaster, England
Diggle, Peter J.
[1
]
Snow, Robert W.
论文数: 0引用数: 0
h-index: 0
机构:
Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, Kenya
Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, EnglandUniv Lancaster, Lancaster Med Sch, Lancaster, England
Snow, Robert W.
[2
,3
]
Noor, Abdisalan M.
论文数: 0引用数: 0
h-index: 0
机构:
Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, KenyaUniv Lancaster, Lancaster Med Sch, Lancaster, England
Noor, Abdisalan M.
[2
]
机构:
[1] Univ Lancaster, Lancaster Med Sch, Lancaster, England
[2] Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, Kenya
[3] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England
In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.