Geostatistical Methods for Disease Mapping and Visualisation Using Data from Spatio-temporally Referenced Prevalence Surveys

被引:24
|
作者
Giorgi, Emanuele [1 ]
Diggle, Peter J. [1 ]
Snow, Robert W. [2 ,3 ]
Noor, Abdisalan M. [2 ]
机构
[1] Univ Lancaster, Lancaster Med Sch, Lancaster, England
[2] Kenya Govt Med Res Ctr, Wellcome Trust Res Programme, Populat & Hlth Theme, Nairobi, Kenya
[3] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England
基金
英国惠康基金;
关键词
Disease mapping; Gaussian processes; geostatistics; parameter uncertainty; parsimony; prevalence; spatio-temporal models; LINEAR MIXED MODELS; CARLO MAXIMUM-LIKELIHOOD; COMPLEX SURVEY DATA; TRANSMISSION INTENSITY; COVARIANCE FUNCTIONS; BAYESIAN-INFERENCE; MALARIA INFECTION; SOUTH-AFRICA; REGRESSION; APPROXIMATIONS;
D O I
10.1111/insr.12268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.
引用
收藏
页码:571 / 597
页数:27
相关论文
共 50 条
  • [1] Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models
    Giorgi, Emanuele
    Sesay, Sanie S. S.
    Terlouw, Dianne J.
    Diggle, Peter J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (02) : 445 - 464
  • [2] A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics
    Amoah, Benjamin
    Diggle, Peter J.
    Giorgi, Emanuele
    BIOMETRICS, 2020, 76 (01) : 158 - 170
  • [3] A Systematic Approach to Identify Shipping Emissions Using Spatio-Temporally Resolved TROPOMI Data
    Kim, Juhuhn
    Emmerich, Michael T. M.
    Voors, Robert
    Ording, Barend
    Lee, Jong-Seok
    REMOTE SENSING, 2023, 15 (13)
  • [4] Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion
    Zhu, L
    Carlin, BP
    STATISTICS IN MEDICINE, 2000, 19 (17-18) : 2265 - 2278
  • [5] Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana
    Yankson, Robert
    Anto, Evelyn Arthur
    Chipeta, Michael Give
    MALARIA JOURNAL, 2019, 18 (1)
  • [6] Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana
    Robert Yankson
    Evelyn Arthur Anto
    Michael Give Chipeta
    Malaria Journal, 18
  • [7] Spatio-temporally constrained origin-destination inferring using public transit fare card data
    Jin, Meihan
    Wang, Menghan
    Gong, Yongxi
    Liu, Yu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 603
  • [8] Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds
    Chakraborty, Pranamesh
    Hegde, Chinmay
    Sharma, Anuj
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 105 : 81 - 99
  • [9] Spatio-Temporally Consistent View Synthesis from Video-Plus-Depth Data with Global Optimization
    Hsu, Hsiao-An
    Chiang, Chen-Kuo
    Lai, Shang-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (01) : 74 - 84
  • [10] Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models
    Yang, Bin
    Guo, Chenjuan
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (09): : 769 - 780