Analytical Solutions of the Electrical RLC Circuit via Liouville-Caputo Operators with Local and Non-Local Kernels

被引:75
作者
Francisco Gomez-Aguilar, Jose [1 ]
Fabian Morales-Delgado, Victor [2 ]
Antonio Taneco-Hernandez, Marco [2 ]
Baleanu, Dumitru [3 ,4 ]
Fabricio Escobar-Jimenez, Ricardo [5 ]
Mohamed Al Qurashi, Maysaa [6 ]
机构
[1] CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Univ Autonoma Guerrero, Unidad Acad Matemat, Av Lazaro Cardenas S-N,Cd Univ, Chilpancingo 39087, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, POB MG 23, RO-76900 Magurele, Romania
[5] Ctr Nacl Invest & Desarrollo Tecnol, Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[6] King Saud Univ, Dept Math, Riyadh 12364, Saudi Arabia
来源
ENTROPY | 2016年 / 18卷 / 08期
关键词
fractional-order circuits; Liouville-Caputo fractional operator; Caputo-Fabrizio fractional operator; Atangana-Baleanu fractional operator; FRACTIONAL CALCULUS; MODEL;
D O I
10.3390/e18080402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville-Caputo, Caputo-Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order a is equal to 1.
引用
收藏
页数:12
相关论文
共 33 条