Evaluation of Gated Recurrent Neural Networks in Music Classification Tasks

被引:4
作者
Jakubik, Jan [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Dept Computat Intelligence, Wroclaw, Poland
来源
INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT I | 2018年 / 655卷
关键词
Artificial intelligence; Machine learning; Recurrent Neural Network; Music Information Retrieval;
D O I
10.1007/978-3-319-67220-5_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we evaluate two popular Recurrent Neural Network (RNN) architectures employing the mechanism of gating: Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), in music classification tasks. We examine the performance on four datasets concerning genre, emotion and dance style recognition. Our key result is a significant improvement of classification accuracy achieved by training the recurrent network on random short subsequences of the vector sequences in the training set. We examine the effect of this training approach on both architectures and discuss the implications for the potential use of RNN in music information retrieval.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 20 条
  • [1] Abesser J., 2011, AUD ENG SOC C 42 INT
  • [2] [Anonymous], 2013, ARXIV13061461
  • [3] [Anonymous], 2016, IEEE T NEURAL NETW L
  • [4] [Anonymous], THEAN PYTH FRAM FAST
  • [5] Chung J., 2014, ARXIV
  • [6] A Survey of Audio-Based Music Classification and Annotation
    Fu, Zhouyu
    Lu, Guojun
    Ting, Kai Ming
    Zhang, Dengsheng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (02) : 303 - 319
  • [7] Goller C., 1996, Neural Networks
  • [8] Graves A., 2015, ARTIFICIAL NEURAL NE, P753
  • [9] Hamel P., 2009, P INT SOC MUS INF RE, P399
  • [10] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]