Stein block thresholding for wavelet-based image deconvolution

被引:8
作者
Chesneau, Christophe [1 ]
Fadili, Jalal [2 ]
Starck, Jean-Luc [3 ]
机构
[1] Univ Caen, CNRS UMR 6139, Lab Math Nicolas Oresme, F-14032 Caen, France
[2] Univ Caen, ENSICAEN, GREYC CNRS, F-14050 Caen, France
[3] CEA Saclay, DAPNIA SEDI SAP, F-91191 Gif Sur Yvette, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2010年 / 4卷
关键词
Image deconvolution; block thresholding; wavelets; minimax; LATEX; 2; epsilon; LINEAR INVERSE PROBLEMS; ALGORITHM;
D O I
10.1214/09-EJS550
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov smoothness spaces, and shows that our block estimator can achieve the optimal minimax rate, or is at least nearly-minimax in the least favorable situation. The resulting algorithm is simple to implement and fast. Its computational complexity is dominated by that of the FFT. We report a simulation study to support our theoretical findings. The practical performance of our block vaguelet-wavelet deconvolution compares very favorably to existing competitors on a large set of test images.
引用
收藏
页码:415 / 435
页数:21
相关论文
共 21 条
[1]   Wavelet decomposition approaches to statistical inverse problems [J].
Abramovich, F ;
Silverman, BW .
BIOMETRIKA, 1998, 85 (01) :115-129
[2]  
[Anonymous], 1990, INTRO CONTINUITY EXT
[3]   On adaptive wavelet estimation of a derivative and other related linear inverse problems [J].
Cai, TT .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) :329-349
[4]   A variational formulation for frame-based inverse problems [J].
Chaux, Caroline ;
Combettes, Patrick L. ;
Pesquet, Jean-Christophe ;
Wajs, Valerie R. .
INVERSE PROBLEMS, 2007, 23 (04) :1495-1518
[5]   Stein block thresholding for image denoising [J].
Chesneau, C. ;
Fadili, J. ;
Starck, J. -L. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) :67-88
[6]  
Chesneau C, 2008, STAT SINICA, V18, P1007
[7]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[8]  
DEVORE R, 2006, FDN COMPUTATIONAL MA, V1, P3
[9]  
DONOHO D, 2005, AUSTR NZ IND APPL MA, V46, pC29
[10]   NONLINEAR SOLUTION OF LINEAR INVERSE PROBLEMS BY WAVELET-VAGUELETTE DECOMPOSITION [J].
DONOHO, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) :101-126