Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models

被引:50
作者
Xiong, Guojiang [1 ]
Zhang, Jing [1 ]
Yuan, Xufeng [1 ]
Shi, Dongyuan [2 ]
He, Yu [1 ]
机构
[1] Guizhou Univ, Coll Elect Engn, Guizhou Key Lab Intelligent Technol Power Syst, Guiyang 550025, Guizhou, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Hubei, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 11期
基金
中国国家自然科学基金;
关键词
solar photovoltaic; parameter extraction; symbiotic organisms search; metaheuristic; MAXIMUM POWER POINT; PHOTOVOLTAIC MODULES; OPTIMIZATION ALGORITHM; WHALE OPTIMIZATION; SWARM OPTIMIZATION; DIODE MODEL; PV SYSTEMS; IDENTIFICATION; DESIGN;
D O I
10.3390/app8112155
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extracting accurate values for relevant unknown parameters of solar cell models is vital and necessary for performance analysis of a photovoltaic (PV) system. This paper presents an effective application of a young, yet efficient metaheuristic, named the symbiotic organisms search (SOS) algorithm, for the parameter extraction of solar cell models. SOS, inspired by the symbiotic interaction ways employed by organisms to improve their overall competitiveness in the ecosystem, possesses some noticeable merits such as being free from tuning algorithm-specific parameters, good equilibrium between exploration and exploitation, and being easy to implement. Three test cases including the single diode model, double diode model, and PV module model are served to validate the effectiveness of SOS. On one hand, the performance of SOS is evaluated by five state-of-the-art algorithms. On the other hand, it is also compared with some well-designed parameter extraction methods. Experimental results in terms of the final solution quality, convergence rate, robustness, and statistics fully indicate that SOS is very effective and competitive.
引用
收藏
页数:18
相关论文
共 62 条
[1]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[2]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[3]   Parameter extraction of photovoltaic generating units using multi-verse optimizer [J].
Ali, E. E. ;
El-Hameed, M. A. ;
El-Fergany, A. A. ;
El-Arini, M. M. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 17 :68-76
[4]   Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm [J].
Allam, Dalia ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 123 :535-548
[5]  
[Anonymous], 2017, WORLD EN OUTL
[6]   Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2013, 90 :123-133
[7]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[8]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[9]   Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data [J].
Awadallah, Mohamed A. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 113 :312-320
[10]   Parameter extraction of two diode solar PV model using Fireworks algorithm [J].
Babu, T. Sudhakar ;
Ram, J. Prasanth ;
Sangeetha, K. ;
Laudani, Antonino ;
Rajasekar, N. .
SOLAR ENERGY, 2016, 140 :265-276