Realizing Ultra-Massive MIMO (1024 x 1024) communication in the (0.06-10) Terahertz band

被引:218
作者
Akyildiz, Ian F. [1 ]
Jornet, Josep Miquel [2 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Broadband Wireless Networking BWN Lab, Atlanta, GA 30332 USA
[2] Univ Buffalo State Univ New York, Dept Elect Engn, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Ultra-Massive MIMO; Terahertz band communication; Plasmonics; Graphene; Metamaterials; GRAPHENE;
D O I
10.1016/j.nancom.2016.02.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing demand for higher bandwidth and higher speed wireless communication motivates the exploration of higher frequency bands. The Terahertz (THz) band (0.06-10 THz) is envisioned as one of the key players to meet the demand for such higher bandwidth and data rates. However, the available bandwidth at THz frequencies comes with the cost of a much higher propagation loss. Due to the power limitations of compact solid-state THz transceivers, this results in very short communication distances of approximately one meter. In this paper, the concept of Ultra-Massive Multiple Input Multiple Output (UM MIMO) communication is introduced as a way to increase the communication distance and the achievable capacity of THz-band communication networks. The very small size of THz plasmonic nano-antennas, which leverage the properties of nanomaterials and metamaterials, enables the development of very large plasmonic arrays in very small footprints. For frequencies in the 0.06-1 THz range, metamaterials enable the design of plasmonic antenna arrays with hundreds of elements in a few square centimeters (e.g., 144 elements in 1 cm(2) at 60 GHz). In the 1-10 THz band, graphene-based plasmonic nano-antenna arrays with thousands of elements can be embedded in a few square millimeters (e.g., 1024 elements in 1 mm(2) at 1 THz). The resulting arrays can be utilized both in transmission and in reception (e.g., 1024 x 1024 UM MIMO at 1 THz) to support different modes, from razor-sharp UM beamforming to UM spatial multiplexing, as well as multi-band communication schemes. After introducing the main properties of plasmonic nano-antenna arrays, the working modes of UM MIMO are presented, and preliminary results are provided to highlight the potential of this paradigm. Finally, open challenges and potential solutions to enable UM MIMO communication are described. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 34 条
[1]   Time-Domain Analysis of Graphene-Based Miniaturized Antennas for Ultra-Short-Range Impulse Radio Communications [J].
Abadal, Sergi ;
Llatser, Ignacio ;
Mestres, Albert ;
Lee, Heekwan ;
Alarcon, Eduard ;
Cabellos-Aparicio, Albert .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (04) :1470-1482
[2]   Terahertz band: Next frontier for wireless communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
PHYSICAL COMMUNICATION, 2014, 12 :16-32
[3]   Massive MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits [J].
Bjornson, Emil ;
Hoydis, Jakob ;
Kountouris, Marios ;
Debbah, Merouane .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) :7112-7139
[4]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[5]   Quantum Plasmonic Circuits [J].
de Leon, Nathalie P. ;
Lukin, Mikhail D. ;
Park, Hongkun .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (06) :1781-1791
[6]   Novel Tunable Millimeter-Wave Grating-Gated Plasmonic Detectors [J].
Dyer, Gregory C. ;
Aizin, Gregory R. ;
Reno, John L. ;
Shaner, Eric A. ;
Allen, S. James .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (01) :85-91
[7]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810
[8]   CMOS THz Generator With Frequency Selective Negative Resistance Tank [J].
Gu, Qun Jane ;
Xu, Zhiwei ;
Jian, Heng-Yu ;
Pan, Bo ;
Xu, Xiaojing ;
Chang, Mau-Chung Frank ;
Liu, Wei ;
Fetterman, Harold .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (02) :193-202
[9]  
Han C., 2014, P IEEE NT C COMM ICC
[10]  
Han C., 2016, 3 DIMENSIONAL UNPUB