Mimetic finite difference approximation of quasilinear elliptic problems

被引:11
作者
Antonietti, Paola F. [1 ]
Bigoni, Nadia [1 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
MFD method; Quasilinear elliptic problems; Kacanov method; POSTERIORI ERROR ESTIMATORS; VIRTUAL ELEMENT METHODS; POLYHEDRAL MESHES; NEWTONIAN FLOWS; STOKES PROBLEM; DIFFUSION-PROBLEMS; POLYGONAL MESHES; CONVERGENCE; DISCRETIZATION; EQUATIONS;
D O I
10.1007/s10092-014-0107-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kaanov method. The convergence of the Kaanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 50 条
  • [21] A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems
    Da Veiga, Beirao
    Droniou, Jerome
    Manzini, Gianmarco
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1357 - 1401
  • [22] Anisotropic Nonconforming Quadrilateral Finite Element Approximation to Second Order Elliptic Problems
    Shi, Dong-yang
    Xu, Chao
    Chen, Jin-huan
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (03) : 637 - 653
  • [23] Numerical approximation of elliptic interface problems via isoparametric finite element methods
    Varsakelis, C.
    Marichal, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1945 - 1962
  • [24] Local flux mimetic finite difference methods
    Lipnikov, Konstantin
    Shashkov, Mikhail
    Yotov, Ivan
    NUMERISCHE MATHEMATIK, 2009, 112 (01) : 115 - 152
  • [25] A finite element framework for some mimetic finite difference discretizations
    Rodrigo, C.
    Gaspar, F. J.
    Hu, X.
    Zikatanov, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (11) : 2661 - 2673
  • [26] Finite element approximation of elliptic control problems with constraints on the gradient
    Deckelnick, Klaus
    Gunther, Andreas
    Hinze, Michael
    NUMERISCHE MATHEMATIK, 2009, 111 (03) : 335 - 350
  • [27] Quasilinear elliptic problems with concave-convex nonlinearities
    Carvalho, M. L. M.
    da Silva, Edcarlos D.
    Goulart, C.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
  • [28] A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH IMPLICIT JUMP CONDITION
    Cao, Fujun
    Yuan, Dongfang
    Sheng, Zhiqiang
    Yuan, Guangwei
    He, Limin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 439 - 457
  • [29] The curved mimetic finite difference method: Allowing grids with curved faces
    Pitassi, Silvano
    Ghiloni, Riccardo
    Petretti, Igor
    Trevisan, Francesco
    Specogna, Ruben
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [30] Spectral properties and conservation laws in Mimetic Finite Difference methods for PDEs
    Lopez, Luciano
    Vacca, Giuseppe
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 760 - 784