Mimetic finite difference approximation of quasilinear elliptic problems

被引:11
作者
Antonietti, Paola F. [1 ]
Bigoni, Nadia [1 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
MFD method; Quasilinear elliptic problems; Kacanov method; POSTERIORI ERROR ESTIMATORS; VIRTUAL ELEMENT METHODS; POLYHEDRAL MESHES; NEWTONIAN FLOWS; STOKES PROBLEM; DIFFUSION-PROBLEMS; POLYGONAL MESHES; CONVERGENCE; DISCRETIZATION; EQUATIONS;
D O I
10.1007/s10092-014-0107-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kaanov method. The convergence of the Kaanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 50 条
[21]   A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems [J].
Da Veiga, Beirao ;
Droniou, Jerome ;
Manzini, Gianmarco .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) :1357-1401
[22]   Anisotropic Nonconforming Quadrilateral Finite Element Approximation to Second Order Elliptic Problems [J].
Shi, Dong-yang ;
Xu, Chao ;
Chen, Jin-huan .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (03) :637-653
[23]   Numerical approximation of elliptic interface problems via isoparametric finite element methods [J].
Varsakelis, C. ;
Marichal, Y. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) :1945-1962
[24]   Local flux mimetic finite difference methods [J].
Lipnikov, Konstantin ;
Shashkov, Mikhail ;
Yotov, Ivan .
NUMERISCHE MATHEMATIK, 2009, 112 (01) :115-152
[25]   A finite element framework for some mimetic finite difference discretizations [J].
Rodrigo, C. ;
Gaspar, F. J. ;
Hu, X. ;
Zikatanov, L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (11) :2661-2673
[26]   Finite element approximation of elliptic control problems with constraints on the gradient [J].
Deckelnick, Klaus ;
Gunther, Andreas ;
Hinze, Michael .
NUMERISCHE MATHEMATIK, 2009, 111 (03) :335-350
[27]   Quasilinear elliptic problems with concave-convex nonlinearities [J].
Carvalho, M. L. M. ;
da Silva, Edcarlos D. ;
Goulart, C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
[28]   Quasilinear Elliptic Problems Via Nonlinear Rayleigh Quotient [J].
Carvalho, Marcos L. M. ;
Gasinski, Leszek ;
Santos Junior, Joao R. ;
Silva, Edcarlos D. .
ASYMPTOTIC ANALYSIS, 2025,
[29]   A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH IMPLICIT JUMP CONDITION [J].
Cao, Fujun ;
Yuan, Dongfang ;
Sheng, Zhiqiang ;
Yuan, Guangwei ;
He, Limin .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) :439-457
[30]   The curved mimetic finite difference method: Allowing grids with curved faces [J].
Pitassi, Silvano ;
Ghiloni, Riccardo ;
Petretti, Igor ;
Trevisan, Francesco ;
Specogna, Ruben .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490