Mimetic finite difference approximation of quasilinear elliptic problems

被引:12
|
作者
Antonietti, Paola F. [1 ]
Bigoni, Nadia [1 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
MFD method; Quasilinear elliptic problems; Kacanov method; POSTERIORI ERROR ESTIMATORS; VIRTUAL ELEMENT METHODS; POLYHEDRAL MESHES; NEWTONIAN FLOWS; STOKES PROBLEM; DIFFUSION-PROBLEMS; POLYGONAL MESHES; CONVERGENCE; DISCRETIZATION; EQUATIONS;
D O I
10.1007/s10092-014-0107-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kaanov method. The convergence of the Kaanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 50 条
  • [1] Mimetic finite difference approximation of quasilinear elliptic problems
    Paola F. Antonietti
    Nadia Bigoni
    Marco Verani
    Calcolo, 2015, 52 : 45 - 67
  • [2] An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems
    da Veiga, Lourenco Beirao
    Manzini, Gianmarco
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (11) : 1696 - 1723
  • [3] Finite element approximation for some quasilinear elliptic problems
    Matsuzawa, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 96 (01) : 13 - 25
  • [4] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS
    Cangiani, Andrea
    Manzini, Gianmarco
    Russo, Alessandro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2612 - 2637
  • [5] Finite difference approximation of homogenization problems for elliptic equations
    Orive, R
    Zuazua, E
    MULTISCALE MODELING & SIMULATION, 2005, 4 (01): : 36 - 87
  • [6] Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems
    Lipnikov, K.
    Manzini, G.
    Svyatskiy, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (07) : 2620 - 2642
  • [7] MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS
    Brezzi, Franco
    Buffa, Annalisa
    Lipnikov, Konstantin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02): : 277 - 295
  • [8] A two-level method for mimetic finite difference discretizations of elliptic problems
    Antonietti, Paola F.
    Verani, Marco
    Zikatanov, Ludmil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (11) : 2674 - 2687
  • [9] The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient
    Lipnikov, Konstantin
    Manzini, Gianmarco
    Moulton, J. David
    Shashkov, Mikhail
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 111 - 126
  • [10] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH STAGGERED DISCRETIZATIONS OF DIFFUSION COEFFICIENTS
    Manzini, G.
    Lipnikov, K.
    Moulton, J. D.
    Shashkov, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2956 - 2981