A trust-region method for nonlinear bilevel programming: Algorithm and computational experience

被引:118
作者
Colson, B
Marcotte, P
Savard, G
机构
[1] Fac Univ Notre Dame Paix, Dept Math, B-5000 Namur, Belgium
[2] Univ Montreal, CRT, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, DIRO, Montreal, PQ H3C 3J7, Canada
[4] Ecole Polytech, Dept Math & Genie Ind, Montreal, PQ H3C 3A7, Canada
[5] Ecole Polytech, GERAD, Montreal, PQ H3C 3A7, Canada
关键词
bilevel programming; nonlinear programming; trust-region methods; approximation; numerical results;
D O I
10.1007/s10589-005-4612-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the approximation of nonlinear bilevel mathematical programs by solvable programs of the same type, i.e., bilevel programs involving linear approximations of the upper-level objective and all constraint-defining functions, as well as a quadratic approximation of the lower-level objective. We describe the main features of the algorithm and the resulting software. Numerical experiments tend to confirm the promising behavior of the method.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 76 条
[1]  
AIYOSHI E, 1981, IEEE T SYST MAN CYB, V11, P444
[2]   A SOLUTION METHOD FOR THE STATIC CONSTRAINED STACKELBERG PROBLEM VIA PENALTY METHOD [J].
AIYOSHI, E ;
SHIMIZU, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) :1111-1114
[3]  
Al-Khayyal F. A., 1992, Annals of Operations Research, V34, P125, DOI 10.1007/BF02098176
[4]   A SOLUTION METHOD FOR THE LINEAR STATIC STACKELBERG PROBLEM USING PENALTY-FUNCTIONS [J].
ANANDALINGAM, G ;
WHITE, DJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (10) :1170-1173
[5]   INTO THEIR LABORS - A CELEBRATION OF BERGER,JOHN [J].
ANANT, V .
RACE & CLASS, 1992, 34 (02) :1-17
[6]  
Auslender A, 1976, Optimisation: Methodes numeques
[7]   AN EXPLICIT SOLUTION TO THE MULTILEVEL PROGRAMMING PROBLEM [J].
BARD, JF ;
FALK, JE .
COMPUTERS & OPERATIONS RESEARCH, 1982, 9 (01) :77-100
[8]   CONVEX 2-LEVEL OPTIMIZATION [J].
BARD, JF .
MATHEMATICAL PROGRAMMING, 1988, 40 (01) :15-27
[9]   A BRANCH AND BOUND ALGORITHM FOR THE BILEVEL PROGRAMMING PROBLEM [J].
BARD, JF ;
MOORE, JT .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02) :281-292
[10]  
Bard JF, 1998, Practical Bilevel Optimization: Algorithms and Applications