On the Complexity of Dynamic Submodular Maximization

被引:7
作者
Chen, Xi [1 ]
Peng, Binghui [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
来源
PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22) | 2022年
关键词
Submodular maximization; Dynamic algorithm; Query complexity; ADAPTIVE COMPLEXITY;
D O I
10.1145/3519935.3519951
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of n insertions and deletions. We show that any algorithm that maintains a (0.5 + epsilon)-approximate solution under a cardinality constraint, for any constant epsilon > 0, must have an amortized query complexity that is polynomial in n. Moreover, a linear amortized query complexity is needed in order to maintain a 0.584-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMN+20, Mon20] that achieve (0.5 - epsilon)-approximation with a polylog(n) amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee 1 - 1/e - epsilon and amortized query complexities O (log(k/epsilon)/epsilon(2)) and k(O(1/epsilon 2)) log n, respectively, where k denotes the cardinality parameter or the rank of the matroid.
引用
收藏
页码:1685 / 1698
页数:14
相关论文
共 40 条
[1]  
Alaluf Naor, 2020, 47 INT C AUTOMATA LA
[2]  
Badanidiyuru A., 2014, P 25H ANN ACM SIAM S, P1497, DOI [10.1137/1.9781611973402. 110, DOI 10.1137/1.9781611973402.110, 10.1137/1.9781611973402.110]
[3]   Streaming Submodular Maximization: Massive Data Summarization on the Fly [J].
Badanidiyuru, Ashwinkumar ;
Mirzasoleiman, Baharan ;
Karbasi, Amin ;
Krause, Andreas .
PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, :671-680
[4]  
Balcan MF, 2011, ACM S THEORY COMPUT, P793
[5]  
Balkanski E, 2019, Disc Algorithms, P283
[6]  
Balkanski E, 2018, PR MACH LEARN RES, V80
[7]   An Optimal Approximation for Submodular Maximization under a Matroid Constraint in the Adaptive Complexity Model [J].
Balkanski, Eric ;
Rubinstein, Aviad ;
Singer, Yaron .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :66-77
[8]   The Adaptive Complexity of Maximizing a Submodular Function [J].
Balkanski, Eric ;
Singer, Yaron .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :1138-1151
[9]   The Limitations of Optimization from Samples [J].
Balkanski, Eric ;
Rubinstein, Aviad ;
Singer, Yaron .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :1016-1027
[10]  
Barbosa R, 2015, PR MACH LEARN RES, V37, P1236