Hausdorff dimension and generalized simultaneous diophantine approximation

被引:22
作者
Rynne, BP [1 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1112/S0024609398004536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that m is a positive integer, tau = (tau(1),...,tau(m)) is an element of R-+(m) is a vector of strictly positive numbers, and Q is an infinite set of positive integers. Let W-Q(m; tau) be the set {x is an element of R-m : parallel to x(i)q parallel to < q(-tau i,) 1 less than or equal to i less than or equal to m, for infinitely many q is an element of Q}. In this paper we obtain the Hausdorff dimension of this set. We also consider a generalization of the set W-Q(m; tau), where the error terms q(-tau i) in the inequalities are replaced by psi(i)(q), for general functions psi(i) satisfying a certain condition at infinity.
引用
收藏
页码:365 / 376
页数:12
相关论文
共 12 条
[1]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[2]   SINGULAR NORMAL-TUPLES AND HAUSDORFF DIMENSION [J].
BAKER, RC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (MAY) :377-385
[3]  
Besicovitch A., 1934, J LOND MATH SOC, V9, P126
[4]  
Borosh I., 1972, Indag. Math, V34, P193
[5]   A note on the theorem of Jarnik-Besicovitch [J].
Dickinson, H .
GLASGOW MATHEMATICAL JOURNAL, 1997, 39 :233-236
[6]  
DODSON MM, 1992, J REINE ANGEW MATH, V432, P69
[7]  
DODSON MM, 1991, J LOND MATH SOC, V44, P1
[8]  
Eggleston H., 1952, Proceedings of the London Mathematics Soc. (2), V54, P42
[9]   A PROBLEM IN THE METRIC THEORY OF DIOPHANTINE APPROXIMATION [J].
HARMAN, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (148) :391-400