Implementation of adaptive optics in fluorescent microscopy using wavefront sensing and correction

被引:3
作者
Azucena, Oscar [1 ]
Crest, Justin [2 ]
Cao, Jian [2 ]
Sullivan, William [2 ]
Kner, Peter [3 ]
Gavel, Donald [4 ]
Dillon, Daren [4 ]
Olivier, Scot [5 ]
Kubby, Joel [1 ]
机构
[1] Univ Calif Santa Cruz, Jack Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[4] Univ Calif Santa Cruz, Lab Adapt Opt, Santa Cruz, CA 95064 USA
[5] Lawrence Livermore Natl Lab, Phys & Adv Technol, Livermore, CA 94550 USA
来源
MEMS ADAPTIVE OPTICS IV | 2010年 / 7595卷
基金
美国国家科学基金会;
关键词
Shack-Hartmann Wavefront Sensor; fluorescent microscopy; biological imaging; Adaptive Optics; Drosophila Melanogaster; HUMAN EYE; ABERRATIONS;
D O I
10.1117/12.846380
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Adaptive optics (AO) improves the quality of astronomical imaging systems by using real time measurement of the turbulent medium in the optical path using a guide star (natural or artificial) as a point source reference beacon [1]. AO has also been applied to vision science to improve the view of the human eye. This paper will address our current research focused on the improvement of fluorescent microscopy for biological imaging utilizing current AO technology. A Shack-Hartmann wavefront sensor (SHWS) is used to measure the aberration introduced by a Drosophila Melanogaster embryo with an implanted 1 micron fluorescent bead that serves as a point source reference beacon. Previous measurements of the wavefront aberrations have found an average peak-to-valley and root-mean-square (RMS) wavefront error of 0.77 micrometers and 0.15 micrometers, respectively. Measurements of the Zernike coefficients indicated that the correction of the first 14 Zernike coefficients is sufficient to correct the aberrations we measured. Here we show that a MEMS deformable mirror with 3.5 microns of stroke and 140 actuators is sufficient to correct these aberrations. The design, assembly and initial results for the use of a MEMS deformable mirror, SHWS and implanted fluorescent reference beacon for wavefront correction are discussed.
引用
收藏
页数:9
相关论文
共 18 条
[1]   Implementation of a Shack-Hartmann Wavefront Sensor for the measurement of embryo induced aberrations using fluorescent microscopy [J].
Azucena, Oscar ;
Kubby, Joel ;
Crest, Justin ;
Cao, Jian ;
Sullivan, William ;
Kner, Peter ;
Gavel, Donald ;
Dillon, Daren ;
Olivier, Scot .
MEMS ADAPTIVE OPTICS III, 2009, 7209
[2]  
Babcock H. W., 1953, Publ. Astron. Soc. Pac, V65, P229, DOI [10.1086/126606, DOI 10.1086/126606]
[3]   Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor [J].
Beverage, JL ;
Shack, RV ;
Descour, MR .
JOURNAL OF MICROSCOPY, 2002, 205 :61-75
[4]   Adaptive optics in microscopy [J].
Booth, Martin J. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1861) :2829-2843
[5]  
CAMPBELL NA, 2002, BIOLOGY BENJAMIN CUM
[6]  
Diaz Santana Haro L, 1999, Opt Lett, V24, P61
[7]   Coherence-gated wave-front sensing in strongly scattering samples [J].
Feierabend, M ;
Rückel, M ;
Denk, W .
OPTICS LETTERS, 2004, 29 (19) :2255-2257
[8]  
HARDY JW, 1998, ADAPT OPT ASTRON TEL
[9]   Supernormal vision and high-resolution retinal imaging through adaptive optics [J].
Liang, JZ ;
Williams, DR ;
Miller, DT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (11) :2884-2892
[10]   OBJECTIVE MEASUREMENT OF WAVE ABERRATIONS OF THE HUMAN EYE WITH THE USE OF A HARTMANN-SHACK WAVE-FRONT SENSOR [J].
LIANG, JZ ;
GRIMM, B ;
GOELZ, S ;
BILLE, JF .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (07) :1949-1957