Variable Selection for Kernel Classifiers: A Feature-to-Input Space Approach

被引:0
|
作者
Oosthuizen, Surette [1 ]
Steel, Sarel [1 ]
机构
[1] Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South Africa
关键词
Binary classification; Feature space; Kernel classifiers; Variable selection; SUPPORT VECTOR MACHINES;
D O I
10.1007/978-3-642-01044-6_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An aspect of kernel classifiers which complicates variable selection is the implicit use of the transformation function Phi. This function maps the space in which the data cases reside, the so-called input space (X), to a higher dimensional feature space (T). Variable selection in F is a difficult problem, while variable selection in X is mostly inadequate. We propose an intermediate kernel variable selection approach which is implemented in X while also accounting for the fact that kernel classifiers operate in F.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 50 条
  • [1] Input variable selection in kernel Fisher discriminant analysis
    Louw, N
    Steel, SJ
    FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 126 - +
  • [2] A comparison of feature selection procedures for classifiers based on kernel density estimation
    Acuna, E
    Coaquira, F
    Gonzalez, M
    CCCT 2003, VOL 1, PROCEEDINGS: COMPUTING/INFORMATION SYSTEMS AND TECHNOLOGIES, 2003, : 468 - 472
  • [3] Boundedness of input space and effective dimension of feature space in kernel methods
    Ikeda, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (01) : 258 - 260
  • [4] Input space versus feature space in kernel-based methods
    Mocrosoft Research Ltd., Cambridge CB2, United Kingdom
    不详
    不详
    不详
    IEEE Trans Neural Networks, 5 (1000-1017):
  • [5] Input space versus feature space in kernel-based methods
    Schölkopf, B
    Mika, S
    Burges, CJC
    Knirsch, P
    Müller, KR
    Rätsch, G
    Smola, AJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1000 - 1017
  • [6] Bias and stability of single variable classifiers for feature ranking and selection
    Fakhraei, Shobeir
    Soltanian-Zadeh, Hamid
    Fotouhi, Farshad
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (15) : 6945 - 6958
  • [7] Input variable selection for feature extraction in classification problems
    Choi, Sang-Il
    Oh, Jiyong
    Choi, Chong-Ho
    Kim, Chunghoon
    SIGNAL PROCESSING, 2012, 92 (03) : 636 - 648
  • [8] A New Approach for Binary Feature Selection and Combining Classifiers
    Asaithambi, Asai
    Valev, Ventzeslav
    Krzyzak, Adam
    Zeljkovic, Vesna
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 681 - 687
  • [9] An Approach of Multiple Classifiers Ensemble Based on Feature Selection
    Chen, Bing
    Zhang, Hua-Xiang
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 390 - 394
  • [10] Local structure preservation in Kernel space for feature selection
    Zhong, Zhi
    Chen, Long
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) : 33339 - 33356