On the Theory of Self-Similar Crystallization with a Mushy Layer

被引:0
作者
Alexandrov, D. V. [1 ]
Alexandrova, I. V. [1 ]
机构
[1] Ural Fed Univ, Dept Math Phys, Lab Multiscale Math Modeling, Lenin Ave,51, Ekaterinburg 620000, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016) | 2017年 / 1863卷
基金
俄罗斯基础研究基金会;
关键词
Mushy layer; crystallization; NONLINEAR DYNAMICS; DIRECTIONAL SOLIDIFICATION; ALLOY; THERMODIFFUSION; INSTABILITY; STABILITY; BOUNDARY; FLOW; ZONE; MELT;
D O I
10.1063/1.4992694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set of non-linear equations describing the self-similar directional crystallization process is solved in the case of small variations of the solid phase fraction with time. The solute concentration, temperature, liquid phase fraction and parabolic growth rate constants are found analytically.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer
    Kitsios, V.
    Atkinson, C.
    Sillero, J. A.
    Borrell, G.
    Gungor, A. G.
    Jimenez, J.
    Soria, J.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2016, 61 : 129 - 136
  • [22] On the theory of bulk crystallization in the moving phase transition layer
    Alexandrov, D., V
    Ivanov, A. A.
    Alexandrova, I., V
    JOURNAL OF CRYSTAL GROWTH, 2020, 532
  • [23] Self-similar analysis of Eyring-Powell fluid in boundary layer without simplification
    Avramenko, A. A.
    Kovetskaya, M. M.
    Shevchuk, I., V
    CHINESE JOURNAL OF PHYSICS, 2022, 75 : 28 - 37
  • [24] Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems
    Alexandrov, D. V.
    Malygin, A. P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (5-6) : 1144 - 1149
  • [25] Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation
    Alexandrov, Dmitri V.
    Ivanov, Alexander A.
    Alexandrova, Irina V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2113):
  • [26] On self-similar singularity formation for the binormal flow
    Anatole Guérin
    Journal of Evolution Equations, 2023, 23
  • [27] Self-similar behaviors in the crude oil market
    Liu, Siyao
    Fang, Wei
    Gao, Xiangyun
    Wang, Ze
    An, Feng
    Wen, Shaobo
    ENERGY, 2020, 211 (211)
  • [28] On self-similar singularity formation for the binormal flow
    Guerin, Anatole
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (03)
  • [29] Self-Similar Draining near a Vertical Edge
    Xue, Nan
    Stone, Howard A.
    PHYSICAL REVIEW LETTERS, 2020, 125 (06)
  • [30] Exact self-similar solutions for the magnetized Noh Z pinch problem
    Velikovich, A. L.
    Giuliani, J. L.
    Zalesak, S. T.
    Thornhill, J. W.
    Gardiner, T. A.
    PHYSICS OF PLASMAS, 2012, 19 (01)