Irreducibility of Lagrangian Quot schemes over an algebraic curve

被引:3
作者
Cheong, Daewoong [1 ]
Choe, Insong [2 ]
Hitching, George H. [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math, Chungdae Ro 1, Cheongju 28644, Chungbuk, South Korea
[2] Konkuk Univ, Dept Math, 1 Hwayang Dong, Seoul 143701, South Korea
[3] Oslo Metropolitan Univ, Postboks 4,St Olays Plass, N-0130 Oslo, Norway
关键词
SYMPLECTIC BUNDLES; SUBBUNDLES;
D O I
10.1007/s00209-021-02807-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a complex projective smooth curve and W a symplectic vector bundle of rank 2n over C. The Lagrangian Quot scheme LQ(-e)(W) parameterizes subsheaves of rank n and degree -e which are isotropic with respect to the symplectic form. We prove that LQ(-e)(W) is irreducible and generically smooth of the expected dimension for all large e, and that a generic element is saturated and stable.
引用
收藏
页码:1265 / 1289
页数:25
相关论文
共 6 条
  • [1] Isotropic Quot schemes of orthogonal bundles over a curve
    Cheong, Daewoong
    Choe, Insong
    Hitching, George H.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (08)
  • [2] Counting maximal Lagrangian subbundles over an algebraic curve
    Cheong, Daewoong
    Choe, Insong
    Hitching, George H.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [4] Moduli spaces of orthogonal and symplectic bundles over an algebraic curve
    Serman, Olivier
    COMPOSITIO MATHEMATICA, 2008, 144 (03) : 721 - 733
  • [5] Non-defectivity of Grassmannian bundles over a curve
    Choe, Insong
    Hitching, George H.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (07)
  • [6] Counting maximal isotropic subbundles of orthogonal bundles over a curve
    Cheong, Daewoong
    Choe, Insong
    Hitching, George H.
    JOURNAL OF ALGEBRA, 2025, 663 : 727 - 764