Evolution equations driven by a fractional Brownian motion

被引:157
作者
Maslowski, B
Nualart, D [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague, Czech Republic
[2] Univ Barcelona, Fac Matemat, E-08007 Barcelona, Spain
关键词
D O I
10.1016/S0022-1236(02)00065-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study nonlinear stochastic evolution equations in a Hilbert space driven by a cylindrical fractional Brownian motion with Hurst parameter H > 1/2 and nuclear covariance operator. We establish the existence and uniqueness of a mild solution under some regularity and boundedness conditions on the coefficients and for some values of the parameter H. This result is applied to stochastic parabolic equation perturbed by a fractional white noise. In this case, if the coefficients are Lipschitz continuous and bounded the existence and uniqueness of a solution holds if H > d/4. The proofs of our results combine techniques of fractional calculus with semigroup estimates. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 305
页数:29
相关论文
共 32 条
[11]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[12]  
Eidelman S.D., 1969, PARABOLIC SYSTEMS, P469
[13]   On fractional Brownian processes [J].
Feyel, D ;
De la Pradelle, A .
POTENTIAL ANALYSIS, 1999, 10 (03) :273-288
[14]  
Garroni M. G., 1992, Green functions for second order parabolic integro-differential problems
[15]   A parabolic stochastic differential equation with fractional Brownian motion input [J].
Grecksch, W ;
Anh, VV .
STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) :337-346
[16]  
GRISVARD P, 1966, J MATH PURE APPL, V45, P143
[17]   Heat equations with fractional white noise potentials [J].
Hu, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (03) :221-243
[18]  
Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applications
[19]  
Kolmogorov A. N., 1940, DOKL AKAD NAUK SSSR, V26, P115
[20]   ON THE SELF-SIMILAR NATURE OF ETHERNET TRAFFIC (EXTENDED VERSION) [J].
LELAND, WE ;
TAQQU, MS ;
WILLINGER, W ;
WILSON, DV .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1994, 2 (01) :1-15