Combined STEM-EDS tomography of nanowire structures

被引:13
作者
Bender, Hugo [1 ]
Richard, Olivier [1 ]
Kundu, Paromita [1 ]
Favia, Paola [1 ]
Zhong, Zhichao [2 ]
Palenstijn, Willem Jan [2 ]
Batenburg, Kees Joost [2 ]
Wirix, Maarten [3 ]
Kohr, Holger [3 ]
Schoenmakers, Remco [3 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[3] Thermo Fisher Sci, Achtseweg Noord 5, NL-5600 KA Eindhoven, Netherlands
关键词
STEM tomography; EDS tomography; HEBT tomography reconstruction; nanowire device; pillar tomography sample; RECONSTRUCTION; ABSORPTION;
D O I
10.1088/1361-6641/ab4840
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The 3D spatial resolution, the material contrast and the evolution of the noise are analyzed in the reconstructed volume of a combined scanning transmission electron microscopy (HAADF-STEM) and energy dispersive x-ray spectroscopy (EDS) tomography experiment. Standard simultaneous iterative reconstruction technique and HAADF-EDS bimodal tomographic reconstruction are considered for the +/-90 degrees tomography series of a pillar shaped sample embedding a full nanowire device. With a high number of iterations, a spatial resolution for both HAADF and EDS down to 5 nanometer can be reached for this volume. Best material's contrast and minimum noise are obtained for medium number of iterations. Improvement of the signal-to-noise and contrast can be obtained by filtering the EDS data while the spatial resolution is not impacted. A fast and reliable preparation methodology for rectangularly shaped pillar samples for tomography analysis is discussed.
引用
收藏
页数:12
相关论文
共 25 条
[1]  
[Anonymous], SCI TECHNOL
[2]   Embedded nanostructures revealed in three dimensions [J].
Arslan, I ;
Yates, TJV ;
Browning, ND ;
Midgley, PA .
SCIENCE, 2005, 309 (5744) :2195-2198
[3]   3D-analysis of semiconductor structures by electron tomography [J].
Bender, H. ;
Richard, O. ;
Kalio, A. ;
Sourty, E. .
MICROELECTRONIC ENGINEERING, 2007, 84 (11) :2707-2713
[4]   X-ray absorption in pillar shaped transmission electron microscopy specimens [J].
Bender, H. ;
Seidel, F. ;
Favia, P. ;
Richard, O. ;
Vandervorst, W. .
ULTRAMICROSCOPY, 2017, 177 :58-68
[5]   A novel 3D absorption correction method for quantitative EDX-STEM tomography [J].
Burdet, Pierre ;
Saghi, Z. ;
Filippin, A. N. ;
Borras, A. ;
Midgley, P. A. .
ULTRAMICROSCOPY, 2016, 160 :118-129
[6]   Progress and opportunities in EELS and EDS tomography [J].
Collins, Sean M. ;
Midgley, Paul A. .
ULTRAMICROSCOPY, 2017, 180 :133-141
[7]   RECONSTRUCTION OF 3 DIMENSIONAL STRUCTURE FROM PROJECTIONS AND ITS APPLICATION TO ELECTRON MICROSCOPY [J].
CROWTHER, RA ;
DEROSIER, DJ ;
KLUG, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 317 (1530) :319-&
[8]   Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography [J].
Ercius, Peter ;
Weyland, Matthew ;
Muller, David A. ;
Gignac, Lynne M. .
APPLIED PHYSICS LETTERS, 2006, 88 (24)
[9]   3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis [J].
Fu, Bianzhu ;
Gribelyuk, Michael A. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (16)
[10]   XEDS STEM tomography for 3D chemical characterization of nanoscale particles [J].
Genc, Arda ;
Kovarik, Libor ;
Gu, Meng ;
Cheng, Huikai ;
Plachinda, Paul ;
Pullan, Lee ;
Freitag, Bert ;
Wang, Chongmin .
ULTRAMICROSCOPY, 2013, 131 :24-32