Investigating the Effect of Mono- and Bimetallic/Zeolite Catalysts on Hydrocarbon Production during Bio-oil Upgrading from Ex Situ Pyrolysis of Biomass

被引:47
作者
Kumar, Ravinder [1 ]
Strezov, Vladimir [1 ]
Kan, Tao [1 ]
Weldekidan, Haftom [1 ]
He, Jing [1 ]
Jahan, Sayka [1 ]
机构
[1] Macquarie Univ, Fac Sci & Engn, Dept Earth & Environm Sci, Sydney, NSW 2109, Australia
关键词
HETEROGENEOUS CATALYSTS; AROMATIC-HYDROCARBONS; HZSM-5; ZEOLITE; MODEL-COMPOUND; CONVERSION; ZSM-5; MECHANISM; CELLULOSE; VAPORS; FUELS;
D O I
10.1021/acs.energyfuels.9b02724
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Catalytic fast pyrolysis of biomass offers an opportunity for upgrading of pyrolysis bio-oils using mono- and bimetallic-supported catalysts, which have been demonstrated to improve the bio-oil qualities. However, the influence of mono and bimetallic catalysts on different pyrolytic products is less explored. Therefore, this study aimed to examine the effect of mono- and bimetallic catalysts on different pyrolytic products with more emphasis on bio-oil upgrading from ex situ pyrolysis of pine wood biomass. Cu/zeolite and Ni/zeolite were used as the monometallic catalysts, while CuNi/zeolite was used as the bimetallic catalyst in the study. The catalysts were used in ex situ pyrolysis with three different catalyst/biomass ratios: 1, 2, and 3. The results revealed that mono- and bimetallic catalysts with the highest catalyst/biomass ratio of 3 obtained the minimum percentage of oxygen-containing compounds in the bio-oils compared to the sole zeolite. For instance, Cu/zeolite and Ni/zeolite with a catalyst/biomass ratio of 3 (CuZ-2 and NiZ-3) produced the total proportion of hydrocarbons of 50.8 and 41.8%, respectively, while the bimetallic catalyst produced the total hydrocarbons of S4.5% in the bio-oil. It was further revealed that Cu/zeolite favored production of aliphatic hydrocarbons, such as ethylidenecyclobutane and cyclohexene, with CuZ-3 producing 49.6% aliphatic hydrocarbons and 1.25% aromatic hydrocarbons, while Ni/zeolite produced both aromatic and aliphatic hydrocarbons, with NiZ-3 producing 26.8% aromatic hydrocarbons and 15.1% aliphatic hydrocarbons in the bio-oils. The main aromatic hydrocarbons found in the bio-oil were benzene, naphthalene, and phenanthrene. CuNi/zeolite showed better deoxygenation efficiency than monometallic catalysts and produced a comparatively higher percentage of aromatic hydrocarbons at 14.3% and aliphatic hydrocarbons at 39.9%. The main deoxygenation pathway during monometallic catalytic pyrolysis was found to be dehydration and decarboxylation because a higher CO2 yield was observed during the reaction. The CuNi/zeolite converted the oxygenated compounds into hydrocarbons via dehydration, decarboxylation, and decarbonylation because higher yields of both CO2 and CO were observed. Overall, CuNi/zeolite catalytic pyrolysis of biomass resulted in improved bio-oil quality when compared to the monometallic counterparts.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 58 条
[1]   CATALYTIC CONVERSION OF A BIOMASS-DERIVED OIL TO FUELS AND CHEMICALS .1. MODEL-COMPOUND STUDIES AND REACTION PATHWAYS [J].
ADJAYE, JD ;
BAKHSHI, NN .
BIOMASS & BIOENERGY, 1995, 8 (03) :131-149
[2]   Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8075-8098
[3]  
Anderson A.B., 1958, Journal of Chemical Education, V35, P487
[4]  
[Anonymous], 2012, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.201108306
[5]  
[Anonymous], 2009, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.200900404
[6]   Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports [J].
Ardiyanti, A. R. ;
Khromova, S. A. ;
Venderbosch, R. H. ;
Yakovlev, V. A. ;
Melian-Cabrera, I. V. ;
Heeres, H. J. .
APPLIED CATALYSIS A-GENERAL, 2012, 449 :121-130
[7]   Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: a review [J].
Asadieraghi, Masoud ;
Daud, Wan Mohd Ashri Wan ;
Abbas, Hazzim F. .
RSC ADVANCES, 2015, 5 (28) :22234-22255
[8]   Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction [J].
Cheng, Yu-Ting ;
Huber, George W. .
ACS CATALYSIS, 2011, 1 (06) :611-628
[9]   Mechanism of Fast Pyrolysis of Lignin: Studying Model Compounds [J].
Custodis, Victoria B. F. ;
Hemberger, Patrick ;
Ma, Zhiqiang ;
van Bokhoven, Jeroen A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (29) :8524-8531
[10]   Overview of applications of biomass fast pyrolysis oil [J].
Czernik, S ;
Bridgwater, AV .
ENERGY & FUELS, 2004, 18 (02) :590-598