Quantum metrology with unitary parametrization processes

被引:72
作者
Liu, Jing [1 ]
Jing, Xiao-Xing [1 ]
Wang, Xiaoguang [1 ,2 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
FISHER INFORMATION; ENTANGLEMENT; PHASE; LIMIT;
D O I
10.1038/srep08565
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.
引用
收藏
页数:6
相关论文
共 35 条
  • [1] Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit
    Anisimov, Petr M.
    Raterman, Gretchen M.
    Chiruvelli, Aravind
    Plick, William N.
    Huver, Sean D.
    Lee, Hwang
    Dowling, Jonathan P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [2] GENERALIZED UNCERTAINTY RELATIONS AND EFFICIENT MEASUREMENTS IN QUANTUM SYSTEMS
    BELAVKIN, VP
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1976, 26 (03) : 213 - 222
  • [3] Generalized limits for single-parameter quantum estimation
    Boixo, Sergio
    Flammia, Steven T.
    Caves, Carlton M.
    Geremia, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [4] Heisenberg-limited sensitivity with decoherence-enhanced measurements
    Braun, Daniel
    Martin, John
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [5] Quantum Metrology in Non-Markovian Environments
    Chin, Alex W.
    Huelga, Susana F.
    Plenio, Martin B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [6] Escher BM, 2011, NAT PHYS, V7, P406, DOI [10.1038/NPHYS1958, 10.1038/nphys1958]
  • [7] Quantum interferometry with binary-outcome measurements in the presence of phase diffusion
    Feng, X. M.
    Jin, G. R.
    Yang, W.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01):
  • [8] Fujiwara A., 2001, PHYS REV A, V65
  • [9] Optimal estimation of joint parameters in phase space
    Genoni, M. G.
    Paris, M. G. A.
    Adesso, G.
    Nha, H.
    Knight, P. L.
    Kim, M. S.
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [10] Optical Phase Estimation in the Presence of Phase Diffusion
    Genoni, Marco G.
    Olivares, Stefano
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (15)