Let G=(V,E) be a graph without isolated vertices. A dominating set S of G is called a neighborhood total dominating set (or just NTDS) if the induced subgraph G[N(S)] has no isolated vertex. The minimum cardinality of a NTDS of G is called the neighborhood total domination number of G and is denoted by gamma (nt)(G). In this paper, we obtain sharp bounds for the neighborhood total domination number of a tree. We also prove that the neighborhood total domination number is equal to the domination number in several classes of graphs including grid graphs.