On the physical basis of a Larson-Miller constant of 20

被引:29
作者
Maruyama, K. [1 ]
Abe, F. [2 ]
Sato, H. [3 ]
Shimojo, J. [4 ]
Sekido, N. [1 ]
Yoshimi, K. [1 ]
机构
[1] Tohoku Univ, Dept Mat Sci, Sendai, Miyagi, Japan
[2] Natl Inst Mat Sci, Struct Mat Div, Tsukuba, Ibaraki, Japan
[3] Hirosaki Univ, Dept Mech Sci & Engn, Hirosaki, Aomori, Japan
[4] Kobe Steel, Energy & Nucl Equipment Div, Takasago, Hyogo, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Creep fracture; Aging; Creep life prediction; Time-temperature parameter analysis; Modelling of creep rupture life; METALS;
D O I
10.1016/j.ijpvp.2017.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Larson-Miller (LM) and Orr-Sherby-Dom (OSD) parameters are widely used when formulating and predicting creep rupture life t(r). The LM constant C and the activation energy Q in the OSD parameter characterize temperature dependence of t(r). Q = Q(LSD) (Q(LSD): activation energy for lattice self-diffusion) and C = 20 are often assumed in the formulation. Creep rupture datasets of 11 heats of nickel alloy A617, 304H and 304J1 stainless steels, 6 heats of A3004N aluminum alloy and four Mg-Al alloys are formulated with the parameters for determining C and Q of each dataset. Based on the correlation between C and Q among similar materials, it is discussed what is the C value equivalent to Q = Q(LSD). It is also examined how the C value changes with melting temperature of the material. The value of C equivalent to Q = Q(LSD) varies from 14 to 9.5 depending on average values of log(rupture life) and of reciprocal temperature of the dataset. These values of C point out that C = 20 is not equivalent to Q = Q(LSD). The equivalent C values are similar in all the materials independently of their melting temperatures.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 24 条
[1]  
Abe F, 2008, WOODHEAD PUBL MATER, P1, DOI 10.1533/9781845694012
[2]  
Abe F., 2017, T ASME J PRESS VESS, V139, P1
[3]  
Albert SK, 2008, WOODHEAD PUBL MATER, P597, DOI 10.1533/9781845694012.3.597
[4]  
[Anonymous], 2015, SPEC MET INC ALL 617
[5]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[6]   FRACTURE-MECHANISM MAPS AND THEIR CONSTRUCTION FOR FCC METALS AND ALLOYS [J].
ASHBY, MF ;
GANDHI, C ;
TAPLIN, DMR .
ACTA METALLURGICA, 1979, 27 (05) :699-729
[7]  
Berger C, 2008, WOODHEAD PUBL MATER, P446, DOI 10.1533/9781845694012.2.446
[8]  
Chen R. P., 2010, TESTU TO HAGANE, V96, P564
[9]  
HOSOI Y, 1975, METALL TRANS A, V6, P1171, DOI 10.1007/BF02658525
[10]  
Kassner ME, 2009, FUNDAMENTALS OF CREEP IN METALS AND ALLOYS, 2ND EDITION, P223