Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries

被引:10
|
作者
Fukuda, Hiroko [1 ]
Kusakawa, Shunya [2 ]
Nakano, Koki [1 ]
Tanibata, Naoto [1 ]
Takeda, Hayami [1 ]
Nakayama, Masanobu [1 ]
Karasuyama, Masayuki [2 ]
Takeuchi, Ichiro [2 ,3 ,4 ]
Natori, Takaaki [5 ]
Ono, Yasuharu [5 ]
机构
[1] Nagoya Inst Technol, Dept Adv Ceram, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[2] Nagoya Inst Technol, Dept Comp Sci, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[3] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[4] Nagoya Univ, Fac Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
[5] TOAGOSEI CO LTD, Gen Ctr R&D, Minato Ku, 8 Showa Cho, Nagoya, Aichi 4550026, Japan
关键词
LITHIUM METAL; IONIC-CONDUCTIVITY; RECHARGEABLE BATTERIES; EXPERIMENTAL SEARCH; HIGH-ENERGY; CHALLENGES; CONDUCTORS; MOBILITY; ANODE;
D O I
10.1039/d2ra04539g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
NASICON-type LiZr2(PO4)(3) (LZP) has attracted significant attention as a solid oxide electrolyte for all-solid-state Li-ion or Li-metal batteries owing to its high Li-ion conductivity, usability in all-solid-state batteries, and electrochemical stability against Li metal. In this study, we aim to improve the Li-ion conductivity of Li-rich NASICON-type LZPs doped with CaO and SiO2, i.e., Li1+x+2yCayZr2-ySixP3-xO12(0 <= x <= 0.3, 0 <= y <= 0.3) (LCZSP). Herein, a total of 49 compositions were synthesised, and their crystal structures, relative densities, and Li-ion conductivities were characterised experimentally. We confirmed the improvement in Li-ion conductivity by simultaneous replacement of Zr and P sites with Ca and Si ions, respectively. However, the intuition-derived determination of the composition exhibiting the highest Li-ion conductivity is technically difficult because the compositional dependence of the relative density and the crystalline phase of the sample is very complex. Bayesian optimisation (BO) was performed to efficiently discover the optimal composition that exhibited the highest Li-ion conductivity among the samples evaluated experimentally. We also optimised the composition of the LCZSP using multi-task Gaussian process regression after transferring prior knowledge of 47 compositions of Li1+x+2yYxCayZr2-x-yP3O12 (0 <= x <= 0.376, 0 <= y <= 0.376) (LYCZP), i.e., BO with transfer learning. The present study successfully demonstrated that BO with transfer learning can search for optimal compositions two times as rapid as the conventional BO approach. This approach can be widely applicable for the optimisation of various functional materials as well as ionic conductors.
引用
收藏
页码:30696 / 30703
页数:8
相关论文
共 50 条
  • [21] Thin film Li electrolytes for all-solid-state micro-batteries
    Xia, Hui
    Wang, Hai Long
    Xiao, Wei
    Lai, Man On
    Lu, Li
    INTERNATIONAL JOURNAL OF SURFACE SCIENCE AND ENGINEERING, 2009, 3 (1-2) : 23 - 43
  • [22] Rhombohedral Li1+xYxZr2-x(PO4)3 Solid Electrolyte Prepared by Hot-Pressing for All-Solid-State Li-Metal Batteries
    Li, Qinghui
    Xu, Chang
    Huang, Bing
    Yin, Xin
    MATERIALS, 2020, 13 (07)
  • [23] Anion Engineering for Stabilizing Li Interstitial Sites in Halide Solid Electrolytes for All-Solid-State Li Batteries
    Park, Kern-Ho
    Kim, Se Young
    Jung, Mina
    Lee, Su-Bin
    Kim, Min-Jeong
    Yang, In-Jun
    Hwang, Ji-Hoon
    Cho, Woosuk
    Chen, Guoying
    Kim, Kyungsu
    Yu, Jisang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (50) : 58367 - 58376
  • [24] Advancing High-Energy Solid-State Batteries with High-Entropy NASICON-type Solid Electrolytes
    Das, Asish Kumar
    Gami, Pratiksha
    Vasavan, Hari Narayanan
    Saxena, Samriddhi
    Dagar, Neha
    Deswal, Sonia
    Kumar, Pradeep
    Kumar, Sunil
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (19): : 8301 - 8307
  • [25] Polymer solid electrolytes with ultra-stable cycles and high-capacity retention for all-solid-state Li-metal battery
    Wang, Jingshun
    Zhang, Yongquan
    Chen, Zengxu
    Fan, Shuo
    Zhang, Qihui
    Zhang, Yue
    Zhang, Tiandong
    Zhang, Changhai
    Chi, Qingguo
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [26] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [27] Halide Solid-State Electrolytes: Stability and Application for High Voltage All-Solid-State Li Batteries
    Nikodimos, Yosef
    Su, Wei-Nien
    Hwang, Bing Joe
    ADVANCED ENERGY MATERIALS, 2023, 13 (03)
  • [28] Observing Li Nucleation at the Li Metal-Solid Electrolyte Interface in All-Solid-State Batteries
    An, Yun
    Hu, Taiping
    Pang, Quanquan
    Xu, Shenzhen
    ACS NANO, 2025, : 14262 - 14271
  • [29] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [30] Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes
    Banerjee, Abhik
    Wang, Xuefeng
    Fang, Chengcheng
    Wu, Erik A.
    Meng, Ying Shirley
    CHEMICAL REVIEWS, 2020, 120 (14) : 6878 - 6933