Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries

被引:10
|
作者
Fukuda, Hiroko [1 ]
Kusakawa, Shunya [2 ]
Nakano, Koki [1 ]
Tanibata, Naoto [1 ]
Takeda, Hayami [1 ]
Nakayama, Masanobu [1 ]
Karasuyama, Masayuki [2 ]
Takeuchi, Ichiro [2 ,3 ,4 ]
Natori, Takaaki [5 ]
Ono, Yasuharu [5 ]
机构
[1] Nagoya Inst Technol, Dept Adv Ceram, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[2] Nagoya Inst Technol, Dept Comp Sci, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[3] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[4] Nagoya Univ, Fac Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
[5] TOAGOSEI CO LTD, Gen Ctr R&D, Minato Ku, 8 Showa Cho, Nagoya, Aichi 4550026, Japan
关键词
LITHIUM METAL; IONIC-CONDUCTIVITY; RECHARGEABLE BATTERIES; EXPERIMENTAL SEARCH; HIGH-ENERGY; CHALLENGES; CONDUCTORS; MOBILITY; ANODE;
D O I
10.1039/d2ra04539g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
NASICON-type LiZr2(PO4)(3) (LZP) has attracted significant attention as a solid oxide electrolyte for all-solid-state Li-ion or Li-metal batteries owing to its high Li-ion conductivity, usability in all-solid-state batteries, and electrochemical stability against Li metal. In this study, we aim to improve the Li-ion conductivity of Li-rich NASICON-type LZPs doped with CaO and SiO2, i.e., Li1+x+2yCayZr2-ySixP3-xO12(0 <= x <= 0.3, 0 <= y <= 0.3) (LCZSP). Herein, a total of 49 compositions were synthesised, and their crystal structures, relative densities, and Li-ion conductivities were characterised experimentally. We confirmed the improvement in Li-ion conductivity by simultaneous replacement of Zr and P sites with Ca and Si ions, respectively. However, the intuition-derived determination of the composition exhibiting the highest Li-ion conductivity is technically difficult because the compositional dependence of the relative density and the crystalline phase of the sample is very complex. Bayesian optimisation (BO) was performed to efficiently discover the optimal composition that exhibited the highest Li-ion conductivity among the samples evaluated experimentally. We also optimised the composition of the LCZSP using multi-task Gaussian process regression after transferring prior knowledge of 47 compositions of Li1+x+2yYxCayZr2-x-yP3O12 (0 <= x <= 0.376, 0 <= y <= 0.376) (LYCZP), i.e., BO with transfer learning. The present study successfully demonstrated that BO with transfer learning can search for optimal compositions two times as rapid as the conventional BO approach. This approach can be widely applicable for the optimisation of various functional materials as well as ionic conductors.
引用
收藏
页码:30696 / 30703
页数:8
相关论文
共 50 条
  • [1] Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries
    Harada, Maho
    Takeda, Hayami
    Suzuki, Shinya
    Nakano, Koki
    Tanibata, Naoto
    Nakayama, Masanobu
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (30) : 15103 - 15109
  • [2] Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries
    Hou, Minjie
    Liang, Feng
    Chen, Kunfeng
    Dai, Yongnian
    Xue, Dongfeng
    NANOTECHNOLOGY, 2020, 31 (13)
  • [3] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482
  • [4] A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries
    Liu, Ke
    Wu, Maochun
    Wei, Lei
    Lin, Yanke
    Zhao, Tianshou
    JOURNAL OF MEMBRANE SCIENCE, 2020, 610
  • [5] Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)-Sulfur Batteries
    Bhardwaj, Ravindra Kumar
    Zitoun, David
    BATTERIES-BASEL, 2023, 9 (02):
  • [6] Li-Rich Layered Sulfide as Cathode Active Materials in All-Solid-State Li-Metal Batteries
    Marchini, Florencia
    Saha, Sujoy
    Dalla Corte, Daniel Alves
    Tarascon, Jean-Marie
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15145 - 15154
  • [7] In situ interfacial reactions in hydride-oxide composite electrolytes for stable all-solid-state Li-metal batteries
    Zeng, Shunqin
    Zhao, Meinan
    Xie, Chen
    Li, Jianhui
    Ding, Xiaoli
    He, Liqing
    Li, Yongtao
    Zhang, Qingan
    Li, Hai-Wen
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (11) : 3323 - 3333
  • [8] Process optimisation for NASICON-type solid electrolyte synthesis using a combination of experiments and bayesian optimisation
    Takeda, Hayami
    Fukuda, Hiroko
    Nakano, Koki
    Hashimura, Syogo
    Tanibata, Naoto
    Nakayama, Masanobu
    Ono, Yasuharu
    Natori, Takaaki
    MATERIALS ADVANCES, 2022, 3 (22): : 8141 - 8148
  • [9] Cyclic-induced deformation and the degradation of Al-doped LLZO electrolytes in all-solid-state Li-metal batteries
    Adjah, John
    Orisekeh, Kingsley I.
    Ahmed, Ridwan A.
    Vandadi, Mobin
    Agyei-Tuffour, Benjamin
    Dodoo-Arhin, David
    Nyankson, Emmanuel
    Asare, Joseph
    Rahbar, Nima
    Soboyejo, Winston O.
    JOURNAL OF POWER SOURCES, 2024, 594
  • [10] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808