Quartic surfaces with icosahedral symmetry

被引:5
作者
Dolgachev, Igor V. [1 ]
机构
[1] Univ Michigan, Dept Math, 525 E Univ Av, Ann Arbor, MI 49109 USA
关键词
Quartic surface; icosahedron group;
D O I
10.1515/advgeom-2017-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study smooth quartic surfaces in P-3 which admit a group of projective automorphisms isomorphic to the icosahedron group.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 21 条
[1]  
[Anonymous], MATH ANN
[2]   DEGENERATIONS OF HORROCKS-MUMFORD SURFACES [J].
BARTH, W ;
HULEK, K ;
MOORE, R .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :735-755
[3]  
Bini G, 2011, COMMUN NUMBER THEORY, V5, P779
[4]   From qubits to E7 [J].
Cerchiai, Bianca Letizia ;
van Geemen, Bert .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[5]   TWO RATIONAL NODAL QUARTIC 3-FOLDS [J].
Cheltsov, Ivan ;
Shramov, Constantin .
QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04) :573-601
[6]   Quartic double solids with icosahedral symmetry [J].
Cheltsov, Ivan ;
Przyjalkowski, Victor ;
Shramov, Constantin .
EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (01) :96-119
[7]  
Coble A. B, 1982, AM MATH SOC COLLOQ P, V10
[8]  
Conway J. H., 1985, ATLAS of finite groups
[9]   REYE CONGRUENCES [J].
COSSEC, FR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (02) :737-751
[10]  
Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437