On Riesz theorem

被引:0
|
作者
Garcia, EM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1081/AGB-100106796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Riesz type criterion for a class of metric monoids: Local compactness implies finiteness of the Hausdorff dimension (and also of the topological dimension). We construct topological groups showing the necessity of some conditions. We finally prove that for some metric topological spaces finiteness of the algebraic dimension is equivalent to the finiteness of the Hausdorff dimension.
引用
收藏
页码:4989 / 5001
页数:13
相关论文
共 50 条
  • [11] GENERALIZATION OF A THEOREM BY RIESZ,F
    BERZ, E
    MANUSCRIPTA MATHEMATICA, 1970, 2 (03) : 285 - &
  • [12] EXTENSION THEOREM FOR RIESZ HOMOMORPHISMS
    LUXEMBURG, WAJ
    SCHEP, AR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1979, 82 (02): : 145 - 154
  • [13] ON A THEOREM OF F. RIESZ
    Bang, H. H.
    ACTA MATHEMATICA HUNGARICA, 2016, 148 (02) : 360 - 369
  • [14] ON THE THEOREM OF FEJER-RIESZ
    ZYGMUND, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (04) : 310 - 318
  • [15] On the Riesz-Fischer theorem
    Horváth, J
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (04) : 467 - 478
  • [16] GENERALIZATION OF A THEOREM OF RIESZ,F
    HUGGINS, FN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 560 - &
  • [17] A NONSTANDARD VERSION OF A RIESZ THEOREM
    BENELMAMOUNE, I
    BENOIT, E
    LOBRY, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (07): : 653 - 656
  • [18] Burkholder theorem in Riesz spaces
    Azouzi, Youssef
    Ramdane, Kawtar
    POSITIVITY, 2021, 25 (05) : 2157 - 2171
  • [19] A UNIQUENESS THEOREM FOR RIESZ POTENTIALS
    Izyurov, K. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (04) : 577 - 595
  • [20] On a Theorem of F. Riesz
    H. H. Bang
    Acta Mathematica Hungarica, 2016, 148 : 360 - 369