Frobenius extensions and tilting complexes

被引:6
作者
Abe, Hiroki [1 ]
Hoshino, Mitsuo [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba 3058571, Japan
关键词
Frobenius extension; tilting complex; derived equivalence;
D O I
10.1007/s10468-007-9065-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n (>=) 1 be an integer and p a permutation of I = {1,..., n}. For any ring R, we provide a systematic construction of rings A which contain R as a subring and enjoy the following properties: ( a) 1 = Sigma(i is an element of I)e(i) with the e(i) orthogonal idempotents; ( b) ei(x) = xe(i) for all i is an element of I and x is an element of R; (c) e(i) Ae(i) not equal 0 for all i, j is an element of I; (d) e(i)A(A) not congruent to e(j)A(A) unless i = j; ( e) every e(i)Ae(i) is a local ring whenever R is; (f) e(i)A(A) congruent to HomR( Ae p( i), RR) and AAe p( i) not congruent to AHomR( eiA, RR) for all i. I; and ( g) there exists a ring automorphism.. Aut( A) such that.( ei) = e p( i) for all i. I. Furthermore, for any nonempty pi-stable subset J of I, the mapping cone of the multiplication map circle plus i=J Ae(i) circle times R e(i)A(A) -> A(A) is a tilting complex.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 16 条
[1]  
BJORK JE, 1990, PROG MATH, V92, P425
[2]  
Cartan H., 1956, HOMOLOGICAL ALGEBRA
[3]  
Hartshorne R., 1966, LECT NOTES MATH, V20
[4]   Strongly quasi-Frobenius rings [J].
Hoshino, M .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3585-3599
[5]   Tilting complexes defined by idempotents [J].
Hoshino, M ;
Kato, Y .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (01) :83-100
[6]  
Kasch F., 1954, MATH ANN, V127, P453, DOI [10.1007/BF01361137, DOI 10.1007/BF01361137]
[7]  
KASCH F, 1960, HEIDELB AKAD WILL MA, V61, P89
[8]   CLASS OF ARTINIAN RINGS .2. [J].
KUPISCH, H .
ARCHIV DER MATHEMATIK, 1975, 26 (01) :23-35
[9]  
Muller B., 1964, MATH Z, V85, P345
[10]  
Nakayama T., 1961, NAGOYA MATH J, V19, P127, DOI 10.1017/S0027763000002427