SOME IDENTITIES INVOLVING MULTIPLICATIVE (GENERALIZED) (α,1)-DERIVATIONS IN SEMIPRIME RINGS

被引:0
作者
Malleswari, G. Naga [1 ]
Sreenivasulu, S. [2 ]
Shobhalatha, G. [1 ]
机构
[1] Sri Krishnadevaraya Univ, Dept Math, Anantapur 515003, Andhra Pradesh, India
[2] Govt Coll Autonomous, Dept Math, Anantapur 515001, Andhra Pradesh, India
关键词
Semiprime rings; Multiplicative (generalized) (alpha; 1)-derivations; Ideal; DERIVATIONS; PRIME; COMMUTATIVITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring, I a nonzero ideal of R and ff be an automorphism of R. A map F : R -> R is said to be a multiplicative (generalized) (alpha, 1)-derivation associated with a map d : R -> R such that F(xy) = F(x)alpha(y) + xd(y), for all x, y 2 is an element of R. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: (i) F [x;, y] +/- alpha [x, y] = 0; (ii) F (x circle y) +/- alpha (x circle y) = 0; (iii) F [x, y] = [F(x), y](alpha, 1); (iv) F [x; y] = (F(x) circle y)(alpha,1), (v) F (x circle y) = [F(x), y](alpha,1) and (vi) F (x circle y) = (F(x) circle y)(alpha,1), for all x, y is an element of I.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 14 条
[1]  
Ali A., 2018, INT J MATH APPL, V6, P195
[2]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[3]  
Bell HE., 1992, Int. J. Math. Math. Sci, V15, P205, DOI DOI 10.1155/S0161171292000255
[4]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[5]   On the identity h(x)=af(x)+g(x)b [J].
Chang, JC .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (01) :103-113
[6]  
Daif M.N., 1991, Internat. J. Math. & Math. Sci., V14, P615, DOI DOI 10.1155/S0161171291000844
[7]  
Daif MN., 1997, E W J MATH, V9, P31
[8]   On multiplicative (generalized)-derivations in prime and semiprime rings [J].
Dhara, Basudeb ;
Ali, Shakir .
AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) :65-79
[9]   Multiplicativity of left centralizers forcing additivity [J].
El-Sayiad, M. S. Tammam ;
Daif, M. N. ;
De Filippis, V. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01) :61-69
[10]   Multiplicative derivations on C(X) [J].
Goldmann, H ;
Semrl, P .
MONATSHEFTE FUR MATHEMATIK, 1996, 121 (03) :189-197