Physics-informed neural networks for inverse problems in nano-optics and metamaterials

被引:386
|
作者
Chen, Yuyao [1 ,2 ]
Lu, Lu [3 ]
Karniadakis, George Em [3 ]
Dal Negro, Luca [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, 8 St Marys St, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, 8 St Marys St, Boston, MA 02215 USA
[3] Brown Univ, Div Appl Math, 170 Hope St, Providence, RI 02912 USA
[4] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[5] Boston Univ, Div Mat Sci & Engn, 15 St Marys St, Brookline, MA 02446 USA
关键词
SCATTERING; RECONSTRUCTION; FRAMEWORK; ARRAYS; MODES; LIGHT;
D O I
10.1364/OE.384875
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we employ the emerging paradigm of physics-informed neural networks (PINNs) for the solution of representative inverse scattering problems in photonic metamaterials and nano-optics technologies. In particular, we successfully apply mesh-free PINNs to the difficult task of retrieving the effective permittivity parameters of a number of finite-size scattering systems that involve many interacting nanostructures as well as multi-component nanoparticles. Our methodology is fully validated by numerical simulations based on the finite element method (FEM). The development of physics-informed deep learning techniques for inverse scattering can enable the design of novel functional nanostructures and significantly broaden the design space of metamaterials by naturally accounting for radiation and finite-size effects beyond the limitations of traditional effective medium theories. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:11618 / 11633
页数:16
相关论文
共 50 条
  • [21] Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
    Xu, Shengfeng
    Yan, Chang
    Zhang, Guangtao
    Sun, Zhenxu
    Huang, Renfang
    Ju, Shengjun
    Guo, Dilong
    Yang, Guowei
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [22] Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics
    Barmada, S.
    Di Barba, P.
    Formisano, A.
    Mognaschi, M. E.
    Tucci, M.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2023, 38 (11): : 841 - 848
  • [23] Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
    Beltran-Pulido, Andres
    Bilionis, Ilias
    Aliprantis, Dionysios
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (04) : 2678 - 2689
  • [24] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [25] PHYSICS-INFORMED NEURAL NETWORKS WITH HARD CONSTRAINTS FOR INVERSE DESIGN\ast
    Lu, Lu
    Pestourie, Raphael
    Yao, Wenjie
    Wang, Zhicheng
    Verdugo, Francesc
    Johnson, Steven G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : B1105 - B1132
  • [26] Inverse Physics-Informed Neural Networks for transport models in porous materials
    Berardi, Marco
    Difonzo, Fabio, V
    Icardi, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [27] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [28] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [30] Inverse problems in hydrodynamics lubrication: Parameter identification in the Reynold equation by using physics-informed neural networks
    Xi, Yinhu
    Sun, Rongkun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2024,