Physics-informed neural networks for inverse problems in nano-optics and metamaterials

被引:393
作者
Chen, Yuyao [1 ,2 ]
Lu, Lu [3 ]
Karniadakis, George Em [3 ]
Dal Negro, Luca [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, 8 St Marys St, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, 8 St Marys St, Boston, MA 02215 USA
[3] Brown Univ, Div Appl Math, 170 Hope St, Providence, RI 02912 USA
[4] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[5] Boston Univ, Div Mat Sci & Engn, 15 St Marys St, Brookline, MA 02446 USA
关键词
SCATTERING; RECONSTRUCTION; FRAMEWORK; ARRAYS; MODES; LIGHT;
D O I
10.1364/OE.384875
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we employ the emerging paradigm of physics-informed neural networks (PINNs) for the solution of representative inverse scattering problems in photonic metamaterials and nano-optics technologies. In particular, we successfully apply mesh-free PINNs to the difficult task of retrieving the effective permittivity parameters of a number of finite-size scattering systems that involve many interacting nanostructures as well as multi-component nanoparticles. Our methodology is fully validated by numerical simulations based on the finite element method (FEM). The development of physics-informed deep learning techniques for inverse scattering can enable the design of novel functional nanostructures and significantly broaden the design space of metamaterials by naturally accounting for radiation and finite-size effects beyond the limitations of traditional effective medium theories. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:11618 / 11633
页数:16
相关论文
共 40 条
  • [21] SEAGLE: Sparsity-Driven Image Reconstruction Under Multiple Scattering
    Liu, Hsiou-Yuan
    Liu, Dehong
    Mansour, Hassan
    Boufounos, Petros T.
    Waller, Laura
    Kamilov, Ulugbek S.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (01) : 73 - 86
  • [22] Lu L, 2020, Deepxde: A deep learning library for solving differential equations
  • [23] Inverse design in nanophotonics
    Molesky, Sean
    Lin, Zin
    Piggott, Alexander Y.
    Jin, Weiliang
    Vuckovic, Jelena
    Rodriguez, Alejandro W.
    [J]. NATURE PHOTONICS, 2018, 12 (11) : 659 - 670
  • [24] Novotny L., 2012, PRINCIPLES NANOOPTIC
  • [25] Pollard ME, 2009, OPT LETT, V34, P2805, DOI 10.1364/OL.34.002805
  • [26] Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
    Raissi, M.
    Perdikaris, P.
    Karniadakis, G. E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 686 - 707
  • [27] Optimization of Large-Scale Vogel Spiral Arrays of Plasmonic Nanoparticles
    Razi, Mani
    Wang, Ren
    He, Yanyan
    Kirby, Robert M.
    Dal Negro, Luca
    [J]. PLASMONICS, 2019, 14 (01) : 253 - 261
  • [28] Effective dielectric tensor for electromagnetic wave propagation in random media
    Rechtsman, M. C.
    Torquato, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (08)
  • [29] Embedding Deep Learning in Inverse Scattering Problems
    Sanghvi, Yash
    Kalepu, Yaswanth
    Khankhoje, Uday K.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 46 - 56
  • [30] Localization of scattering resonances in aperiodic Vogel spirals
    Sgrignuoli, F.
    Wang, R.
    Pinheiro, F. A.
    Dal Negro, L.
    [J]. PHYSICAL REVIEW B, 2019, 99 (10)