Predicting and affecting response to cancer therapy based on pathway-level biomarkers

被引:66
作者
Ben-Hamo, Rotem [1 ,2 ]
Berger, Adi Jacob [1 ]
Gavert, Nancy [1 ]
Miller, Mendy [2 ]
Pines, Guy [3 ]
Oren, Roni [4 ]
Pikarsky, Eli [5 ]
Benes, Cyril H. [6 ,7 ]
Neuman, Tzahi [5 ]
Zwang, Yaara [1 ]
Efroni, Sol [6 ]
Getz, Gad [2 ,7 ,8 ,9 ]
Straussman, Ravid [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, Rehovot, Israel
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Hebrew Univ Jerusalem, Sch Med, Kaplan Med Ctr, Dept Thorac Surg, Rehovot, Israel
[4] Weizmann Inst Sci, Dept Vet Resources, Rehovot, Israel
[5] Hebrew Univ Jerusalem, Dept Pathol, Jerusalem, Israel
[6] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, IL-52900 Ramat Gan, Israel
[7] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[8] Harvard Med Sch, Boston, MA 02115 USA
[9] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
关键词
RNAI SCREEN; DRUG-SENSITIVITY; CONSTITUTIVE ACTIVATION; SIGNAL TRANSDUCER; LARGE-SCALE; GENE; TARGET; BRAF; TRANSCRIPTION-5; MICROTUBULES;
D O I
10.1038/s41467-020-17090-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in precision oncology. To optimize patient-specific therapeutic strategies, here we couple pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensitivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of pathways in helping to achieve the goal of precision medicine by uncovering dozens of predictive biomarkers. Predicting an individual's response to therapy is an important goal for precision medicine. Here, the authors use an algorithm that takes into account the interaction type and directionality of signalling pathways in protein-protein interactions and find that their pathway analysis can predict essential genes, which may be a target for therapy.
引用
收藏
页数:16
相关论文
共 85 条
[1]  
Alli E, 2002, CANCER RES, V62, P6864
[2]   Genetic heterogeneity in autism: From single gene to a pathway perspective [J].
An, Joon Yong ;
Claudianos, Charles .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2016, 68 :442-453
[3]   WNT signalling pathways as therapeutic targets in cancer [J].
Anastas, Jamie N. ;
Moon, Randall T. .
NATURE REVIEWS CANCER, 2013, 13 (01) :11-26
[4]   Systems-based biological concordance and predictive reproducibility of gene set discovery methods in cardiovascular disease [J].
Azuaje, Francisco ;
Zheng, Huiru ;
Camargo, Anyela ;
Wang, Haiying .
JOURNAL OF BIOMEDICAL INFORMATICS, 2011, 44 (04) :637-647
[5]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[6]   An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules [J].
Basu, Amrita ;
Bodycombe, Nicole E. ;
Cheah, Jaime H. ;
Price, Edmund V. ;
Liu, Ke ;
Schaefer, Giannina I. ;
Ebright, Richard Y. ;
Stewart, Michelle L. ;
Ito, Daisuke ;
Wang, Stephanie ;
Bracha, Abigail L. ;
Liefeld, Ted ;
Wawer, Mathias ;
Gilbert, Joshua C. ;
Wilson, Andrew J. ;
Stransky, Nicolas ;
Kryukov, Gregory V. ;
Dancik, Vlado ;
Barretina, Jordi ;
Garraway, Levi A. ;
Hon, C. Suk-Yee ;
Munoz, Benito ;
Bittker, Joshua A. ;
Stockwell, Brent R. ;
Khabele, Dineo ;
Stern, Andrew M. ;
Clemons, Paul A. ;
Shamji, Alykhan F. ;
Schreiber, Stuart L. .
CELL, 2013, 154 (05) :1151-1161
[7]   Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens [J].
Behan, Fiona M. ;
Iorio, Francesco ;
Picco, Gabriele ;
Goncalves, Emanuel ;
Beaver, Charlotte M. ;
Migliardi, Giorgia ;
Santos, Rita ;
Rao, Yanhua ;
Sassi, Francesco ;
Pinnelli, Marika ;
Ansari, Rizwan ;
Harper, Sarah ;
Jackson, David Adam ;
Mcrae, Rebecca ;
Pooley, Rachel ;
Wilkinson, Piers ;
van der Meer, Dieudonne ;
Dow, David ;
Buser-Doepner, Carolyn ;
Bertotti, Andrea ;
Trusolino, Livio ;
Stronach, Euan A. ;
Saez-Rodriguez, Julio ;
Yusa, Kosuke ;
Garnett, Mathew J. .
NATURE, 2019, 568 (7753) :511-+
[8]   Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and drug control over the p38 network in glioblastoma multiforme progression [J].
Ben-Hamo, Rotem ;
Efroni, Sol .
GENOME MEDICINE, 2011, 3
[9]   Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies [J].
Ben-Hamo, Rotem ;
Efroni, Sol .
BMC SYSTEMS BIOLOGY, 2012, 6
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300