MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes

被引:85
作者
Echaide-Gorriz, Carlos [1 ]
Sorribas, Sara [1 ,2 ]
Tellez, Carlos [1 ]
Coronas, Joaquin [1 ]
机构
[1] Univ Zaragoza, INA, Chem & Environm Engn Dept, Zaragoza 50018, Spain
[2] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England
来源
RSC ADVANCES | 2016年 / 6卷 / 93期
关键词
REVERSE-OSMOSIS MEMBRANES; RESISTANT NANOFILTRATION; INTERFACIAL POLYMERIZATION; SOLUBILITY PARAMETERS; PERFORMANCE; COMPOSITES; SEPARATION; FRAMEWORKS; STABILITY; WATER;
D O I
10.1039/c6ra17522h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticles (NPs) of MOFs MIL-101(Cr), MIL-68(Al) and ZIF-11 with sizes of 70, 103 and 79 nm, respectively, have been used in the development of thin film nanocomposite (TFN) membranes. Such membranes were synthesized with an ultrathin polyamide layer, in which NPs are embedded, about 100-150 nm thick on top of a polyimide P84 (R) asymmetric support. Several important effects have been studied in the synthesis of the membranes for their application to organic solvent nanofiltration (OSN): the effect of the non-solvent bath, the chemical post-treatment, the concentration of precursors for interfacial polymerization and the polymerization time. The influence of different solvents (water, methanol, acetone and THF) and solutes (Acridine Orange, Sunset Yellow and Rose Bengal) on the OSN has also been studied. The hydrophilic character of the membrane and the solvent-membrane and solute-membrane interactions are shown to be the most important parameters affecting the performance of the composite membranes. A maximum permeance of 6.2 L m(-2) h(-1) bar(-1) and a rejection above 90% was obtained from the combination of ZIF-11 and a post-treatment via filtration with dimethylformamide.
引用
收藏
页码:90417 / 90426
页数:10
相关论文
共 35 条
[1]   Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time [J].
Ahmad, AL ;
Ooi, BS .
JOURNAL OF MEMBRANE SCIENCE, 2005, 255 (1-2) :67-77
[2]   VIII(OH){O2C-C6H4-CO2}•(HO2C-C6H4-CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology:: reticular synthesis with infinite inorganic building blocks? [J].
Barthelet, K ;
Marrot, J ;
Férey, G ;
Riou, D .
CHEMICAL COMMUNICATIONS, 2004, (05) :520-521
[3]   A microporous metal-organic framework with high stability for GC separation of alcohols from water [J].
Borjigin, Tsolmon ;
Sun, Fuxing ;
Zhang, Jinlei ;
Cai, Kun ;
Ren, Hao ;
Zhu, Guangshan .
CHEMICAL COMMUNICATIONS, 2012, 48 (61) :7613-7615
[4]   FORMATION AND CHARACTERIZATION OF POLYAMIDE MEMBRANES VIA INTERFACIAL POLYMERIZATION [J].
CHAI, GY ;
KRANTZ, WB .
JOURNAL OF MEMBRANE SCIENCE, 1994, 93 (02) :175-192
[5]   High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8 [J].
Duan, Jintang ;
Pan, Yichang ;
Pacheco, Federico ;
Litwiller, Eric ;
Lai, Zhiping ;
Pinnau, Ingo .
JOURNAL OF MEMBRANE SCIENCE, 2015, 476 :303-310
[6]   A chromium terephthalate-based solid with unusually large pore volumes and surface area [J].
Férey, G ;
Mellot-Draznieks, C ;
Serre, C ;
Millange, F ;
Dutour, J ;
Surblé, S ;
Margiolaki, I .
SCIENCE, 2005, 309 (5743) :2040-2042
[7]  
Hansen C.M., 2007, Hansen's Solubility Parameters: A User's Handbook
[8]   Polymer science applied to biological problems: Prediction of cytotoxic drug interactions with DNA [J].
Hansen, Charles M. .
EUROPEAN POLYMER JOURNAL, 2008, 44 (09) :2741-2748
[9]   50 Years with solubility parameters - past and future [J].
Hansen, CM .
PROGRESS IN ORGANIC COATINGS, 2004, 51 (01) :77-84
[10]   Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration [J].
Hermans, Sanne ;
Marien, Hanne ;
Van Goethem, Cedric ;
Vankelecom, Ivo F. J. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 8 :45-54