Performance assessment of porous baffle on liquid sloshing dynamics in a barge carrying liquid tank

被引:4
作者
Nasar, T. [1 ]
Sannasiraj, S. A. [2 ]
Sundar, V. [2 ]
机构
[1] Natl Inst Technol Karnataka, Dept Water Resources & Ocean Engn, Surathkal 575025, India
[2] Indian Inst Technol Madras, Dept Ocean Engn, Chennai, Tamil Nadu, India
关键词
Barge response; sloshing; baffle wall; porosity; RECTANGULAR TANK; NUMERICAL-SIMULATION; VERTICAL BAFFLE; FLUID; PRESSURE; BEHAVIOR; MOTIONS;
D O I
10.1080/17445302.2020.1781746
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A comprehensive experimental work is done to investigate sloshing dynamics in a partially liquid-filled baffled tank, equipped with a floating barge. An aspect ratio(h(s)/l,liquid depth,h(s)to length of tank,l) of 0.488 (above critical fill level), which corresponds to 75% fill level, is considered. The barge was subjected to regular wave excitations with a wave height of 0.1 m and frequencies ranging from 0.45Hz to 1.54Hz under beam sea condition. In addition, porous baffles are placed inside a rectangular tank to study its effectiveness in reducing the sloshing energy. Three different porosities of 15%, 20.2% and 25.2% atl/2 are considered. The effectiveness of baffles is explored and the salient results for a single porous baffle are discussed. It is learnt that the effect of baffles on sway and roll responses is significant, whereas it is insignificant on heave. Porous baffles are effective in suppressing the sloshing oscillation in the vicinity or at wave excitation,f(w)=f(1), whereas the sloshing is amplified atf(w)=f(2)andf(w)=f(3)due to the resonance condition of modified natural frequencies.
引用
收藏
页码:773 / 786
页数:14
相关论文
共 43 条
[1]   Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing [J].
Akyildiz, H ;
Ünal, E .
OCEAN ENGINEERING, 2005, 32 (11-12) :1503-1516
[2]   A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank [J].
Akyildiz, Hakan .
JOURNAL OF SOUND AND VIBRATION, 2012, 331 (01) :41-52
[3]  
[Anonymous], 1994, P 4 INT OFFSH POL EN
[4]  
Biswal KC, 2013, P 7 INT STRUCT ENG C
[5]   Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank [J].
Chen, BF ;
Chiang, HW .
OCEAN ENGINEERING, 2000, 27 (09) :953-977
[6]   Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank [J].
Cho, I. H. ;
Kim, M. H. .
OCEAN ENGINEERING, 2016, 126 :364-373
[7]   Finite element analysis of resonant sloshing response in 2-D baffled tank [J].
Cho, JR ;
Lee, HW ;
Ha, SY .
JOURNAL OF SOUND AND VIBRATION, 2005, 288 (4-5) :829-845
[8]   Numerical study on liquid sloshing in baffled tank by nonlinear finite element method [J].
Cho, JR ;
Lee, HW .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (23-26) :2581-2598
[9]   A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers [J].
Ebrahimian, M. ;
Noorian, M. A. ;
Haddadpour, H. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (02) :383-392
[10]   Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank [J].
Faltinsen, O. M. ;
Firoozkoohi, R. ;
Timokha, A. N. .
PHYSICS OF FLUIDS, 2011, 23 (06)