Szasz Type Operators Involving Charlier Polynomials and Approximation Properties

被引:20
作者
Al-Abied, A. A. H. [1 ]
Mursaleen, M. Ayman [2 ,3 ]
Mursaleen, M. [4 ]
机构
[1] Dhamar Univ, Dept Math, Dhamar, Yemen
[2] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
[3] Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Serdang 43400, Selangor, Malaysia
[4] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Szasz operators; Charlier polynomials; Modulus of continuity; rate of convergence; Voronoskaja type theorem; VARIANT;
D O I
10.2298/FIL2115149A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to define modified Szasz type operators involving Charlier polynomials and obtain some approximation properties. We prove some results on the order of convergence by using the modulus of smoothness and Peetre's K-functional. We also establish Voronoskaja type theorem for these operators. Moreover, we prove a Korovkin type approximation theorem via q-statistical convergence.
引用
收藏
页码:5149 / 5159
页数:11
相关论文
共 50 条
[41]   Approximation by a generalization of Szasz-Mirakjan type operators [J].
Siddiqui, Mohammed Arif ;
Gupta, Nandita .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04) :575-583
[42]   Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials [J].
Khursheed J. Ansari ;
M. Mursaleen ;
Shagufta Rahman .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :1007-1024
[43]   Some approximation results involving the q-Szasz-Mirakjan-Kantorovich type operators via Dunkl's generalization [J].
Srivastava, H. M. ;
Mursaleen, M. ;
Alotaibi, Abdullah M. ;
Nasiruzzaman, Md. ;
Al-Abied, A. A. H. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (15) :5437-5452
[44]   Approximation by Associated GBS Operators of Szasz-Mirakjan Type Operators [J].
Yadav, Rishikesh ;
Meher, Ramakanta ;
Mishra, Vishnu Narayan .
FILOMAT, 2021, 35 (14) :4789-4809
[45]   On a generalization of Szasz operators by multiple Appell polynomials [J].
Varma, Serhan .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03) :361-369
[46]   Approximation by Szasz–Kantorovich type operators associated with d-symmetric d-orthogonal polynomials of Brenke type [J].
Ajay Kumar ;
Abhishek Senapati ;
Tanmoy Som .
The Journal of Analysis, 2024, 32 :555-571
[47]   GENERALIZED ISMAIL-DURRMEYER TYPE OPERATORS INVOLVING SHEFFER POLYNOMIALS [J].
Agrawal, Purshottam Narain ;
Singh, Sompal .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (03) :267-283
[48]   Approximation properties of a general sequence of λ-Szasz-Kantorovich-Schurer operators [J].
Rao, Nadeem ;
Prajapati, Uday Raj ;
Shahzad, Mohammad ;
Sinha, Brijesh Kumar .
FILOMAT, 2024, 38 (32) :11309-11323
[49]   Szasz-integral operators linking general-Appell polynomials and approximation [J].
Rao, Nadeem ;
Farid, Mohammad ;
Jha, Nand Kishor .
AIMS MATHEMATICS, 2025, 10 (06) :13836-13854
[50]   Approximation Properties of an Extended Family of the Szasz-Mirakjan Beta-Type Operators [J].
Srivastava, Hari Mohan ;
Icoz, Gurhan ;
Cekim, Bayram .
AXIOMS, 2019, 8 (04)