Szasz Type Operators Involving Charlier Polynomials and Approximation Properties

被引:20
作者
Al-Abied, A. A. H. [1 ]
Mursaleen, M. Ayman [2 ,3 ]
Mursaleen, M. [4 ]
机构
[1] Dhamar Univ, Dept Math, Dhamar, Yemen
[2] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
[3] Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Serdang 43400, Selangor, Malaysia
[4] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Szasz operators; Charlier polynomials; Modulus of continuity; rate of convergence; Voronoskaja type theorem; VARIANT;
D O I
10.2298/FIL2115149A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to define modified Szasz type operators involving Charlier polynomials and obtain some approximation properties. We prove some results on the order of convergence by using the modulus of smoothness and Peetre's K-functional. We also establish Voronoskaja type theorem for these operators. Moreover, we prove a Korovkin type approximation theorem via q-statistical convergence.
引用
收藏
页码:5149 / 5159
页数:11
相关论文
共 50 条
[31]   Approximation by a Kantorovich Variant of Szasz Operators Based on Brenke-Type Polynomials [J].
Oksuzer, Ozlem ;
Karsli, Harun ;
Tasdelen, Fatma .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3327-3340
[32]   On Chlodowsky variant of Szasz operators by Brenke type polynomials [J].
Mursaleen, M. ;
Ansari, Khursheed J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :991-1003
[33]   Stancu Type Generalization of Szasz-Durrmeyer Operators Involving Brenke-Type Polynomials [J].
Aktas, Rabia ;
Soylemez, Dilek ;
Tasdelen, Fatma .
FILOMAT, 2019, 33 (03) :855-868
[34]   Rate of convergence for Szasz type operators including Sheffer polynomials [J].
Sucu, Sezgin ;
Ibikli, Ertan .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (01) :55-63
[35]   On approximation properties of Baskakov-Schurer-Szasz operators [J].
Mishra, Vishnu Narayan ;
Sharma, Preeti .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 :381-393
[36]   Some results on generalized Szasz operators involving Sheffer polynomials [J].
Costabile, Francesco Aldo ;
Gualtieri, Maria Italia ;
Napoli, Anna .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 :244-255
[37]   Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials [J].
Mursaleen, M. ;
AL-Abeid, A. A. H. ;
Ansari, Khursheed J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1251-1265
[38]   Approximation properties of (p, q) bivariate Szasz Beta type operators [J].
Khan, Shuzaat Ali ;
Rao, Nadeem ;
Khan, Taqseer .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49) :382-399
[39]   Approximation properties of the modification of Kantorovich type q-Szasz operators [J].
Cai, Qing-Bo ;
Zeng, Xiao-Ming ;
Cui, Zhenlu .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) :176-187
[40]   Approximation by a power series summability method of Kantorovich type Szasz operators including Sheffer polynomials [J].
Loku, Valdete ;
Braha, Naim L. ;
Mansour, Toufik ;
Mursaleen, M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)